

Carotid artery revascularization:

A systematic review and meta-analysis comparing clinical outcomes of second vs. first generations stents

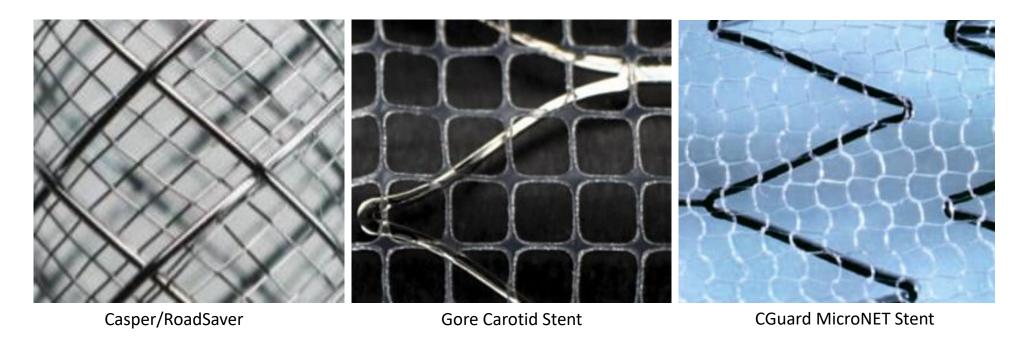
Adam Mazurek MD PhD

on behalf of **CARMEN** Collaborators

<u>CA</u>rotid <u>Revascularization</u> systematic review and <u>ME</u>ta-a<u>N</u>alysis

Disclosure

Speaker name:
Adam Mazurek MD, PhD
I have the following potential conflicts of interest to report:
□ Consulting
☐ Employment in industry
☐ Stockholder of a healthcare company
☐ Owner of a healthcare company
☐ Other(s)


I do not have any potential conflict of interest

CARMEN Collaboration @ LINC 2021

Introduction

 Comparisons of data in individual studies suggest that the use of second-generation carotid stents (SGS; dual-layer, mesh-covered) may improve clinical outcomes.

This has not been systematically evaluated.

Purpose

1. Are the 30-day and 12-month outcomes for **SGS** different than those for first-generation stents (FGS) ?

2. Is there a 'class effect' for SGS?

SGS – second generation stents (mesh/dual-layer)

METHODS

We performed a systematic review and meta-analysis (PRISMA* methodology) of clinical studies that have used First-generation carotid stents (FGS; open or close-cell) and Second-generation carotid stents (SGS).

- 1. Evaluation of typically reported 30-day and 12-month endpoints.
- 3. PubMed search ('carotid' + 'stent' + 'trial' or 'study').
- 4. Prespecified criteria for record initial screening (CADIMA*).
- 5. Prespecified criteria for study eligibility.
- 6. Cumulative data integration.
- 7. Random effect model meta-analysis.
- 8. Endpoints compared for **FGS** (open/close-cell) vs **SGS** (as a group and per individual stent types **RoadSaver/Casper** Stent, **Gore Stent**, **CGuard MicroNET** Stent)

^{*}Moher D at al. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ. 2009

[#] www.cadima.info

Carotid revascularization outcomes of interest

 Random search for typical 30-day outcomes and 12-month outcomes in carotid revascularization studies (2004-2019)

• Identification of: 50 studies with 30-day outcomes

50 studies with 12-month outcomes

Typically-reported 30-day outcomes: DEATH (D)

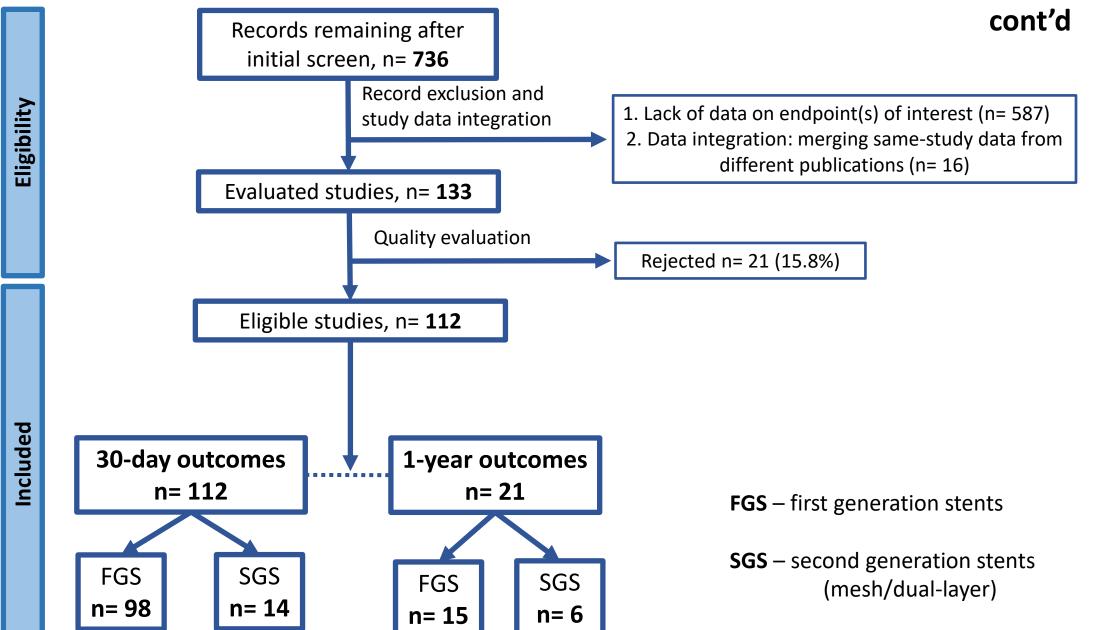
(any) STROKE (S)

MYOCARDIAL INFARCTION (MI)

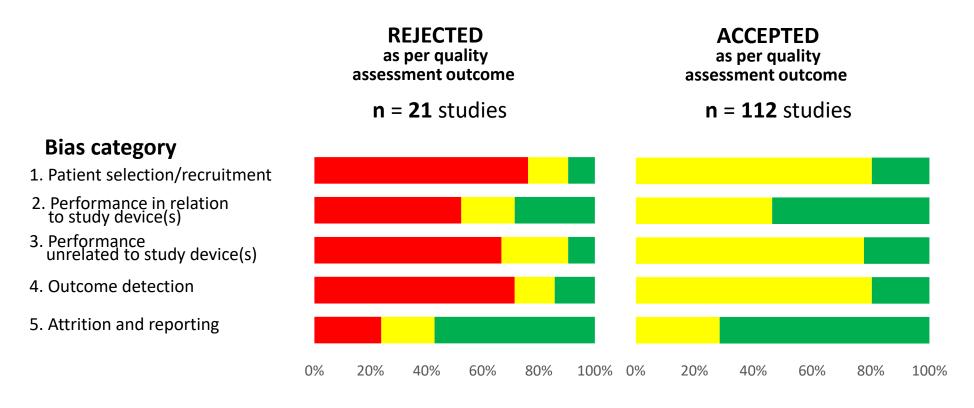
Typically-reported 12-mo outcomes: ipsilateral STROKE (IS)

RESTENOSIS (R/ISR)

CARMEN Systematic review and meta-analysis flowchart (PRISMA)



CARMEN Collaboration @ LINC 2021


CARMEN Systematic review and meta-analysis flowchart (PRISMA)

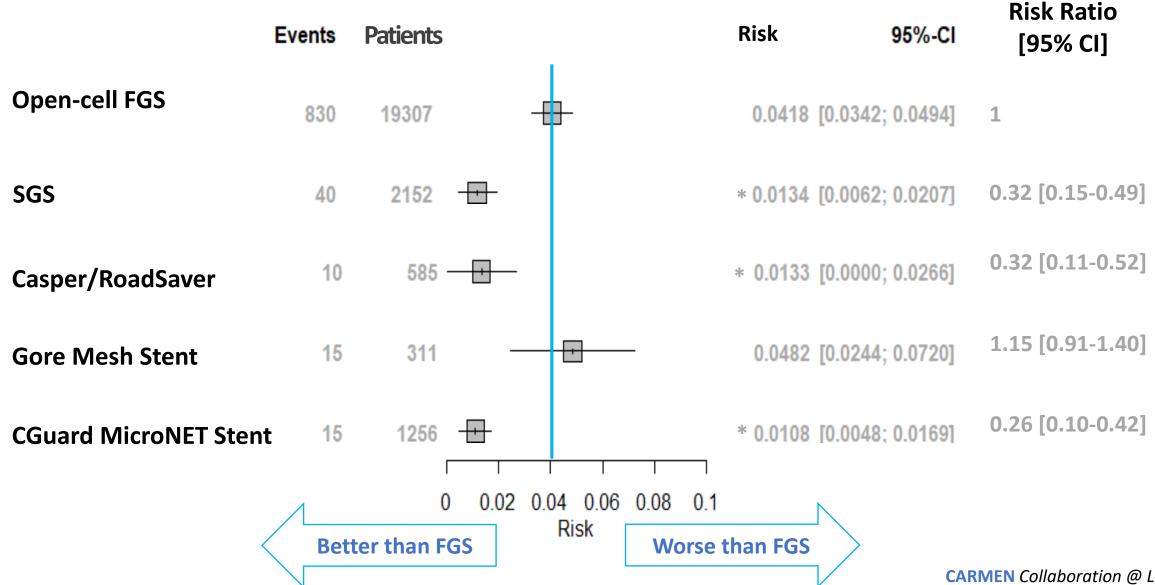
Data Quality: Study Bias Systematic Assessment

Stent type comparisons: Pooled populations characteristics

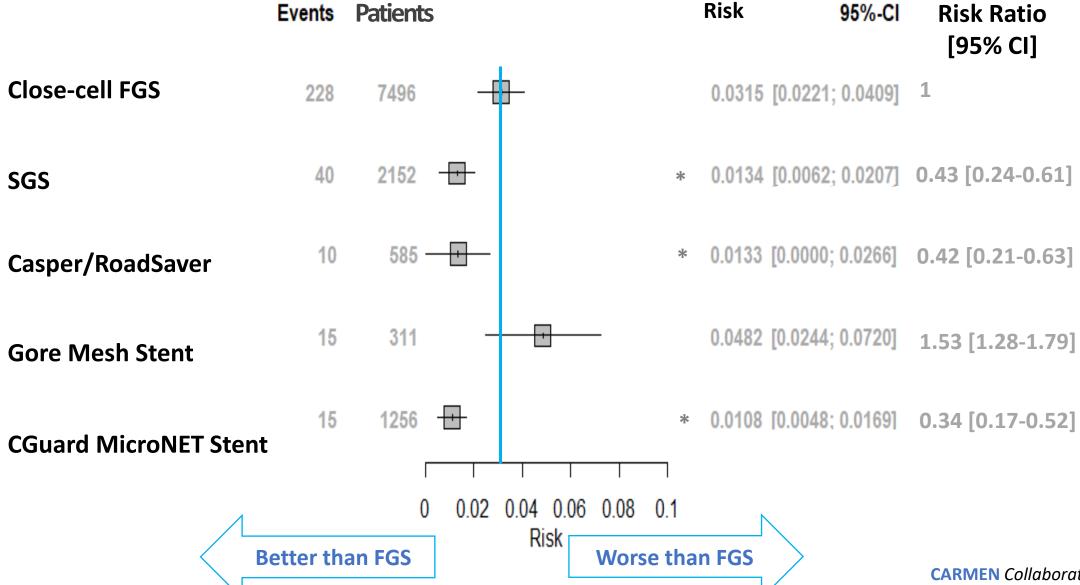
	FGS	SGS	р	Open-cell FGS	Close-cell FGS	p open vs close	p open vs SGS	p close vs SGS
No of studies	98	14	-	29	12	-	-	-
No of patients	65,891*	2,152*	-	20,676*	7,598*	-	-	-
Age [mean] ± SD	70.1 (2.8)	71.9 (2.5)	0.02	70.4 (3.2)	69.3 (3.4)	0.60	0.32	0.13
Male [%]	68%	73%	0.046	68%	66%	0.92	0.12	0.15
Symptomatic [%]	45%	41%	0.40	43%	50%	0.61	0.94	0.45
Diabetic [%]	34%	32%	0.43	35%	36%	0.71	0.88	0.61
CAD [%]	51%	47%	0.55	48%	55%	0.59	0.98	0.98
AF [%]	6%	3%	0.37	3%	ND	-	0.99	-
Contralateral occlusion [%]	10%	16%	0.22	10%	12%	0.87	0.63	0.99

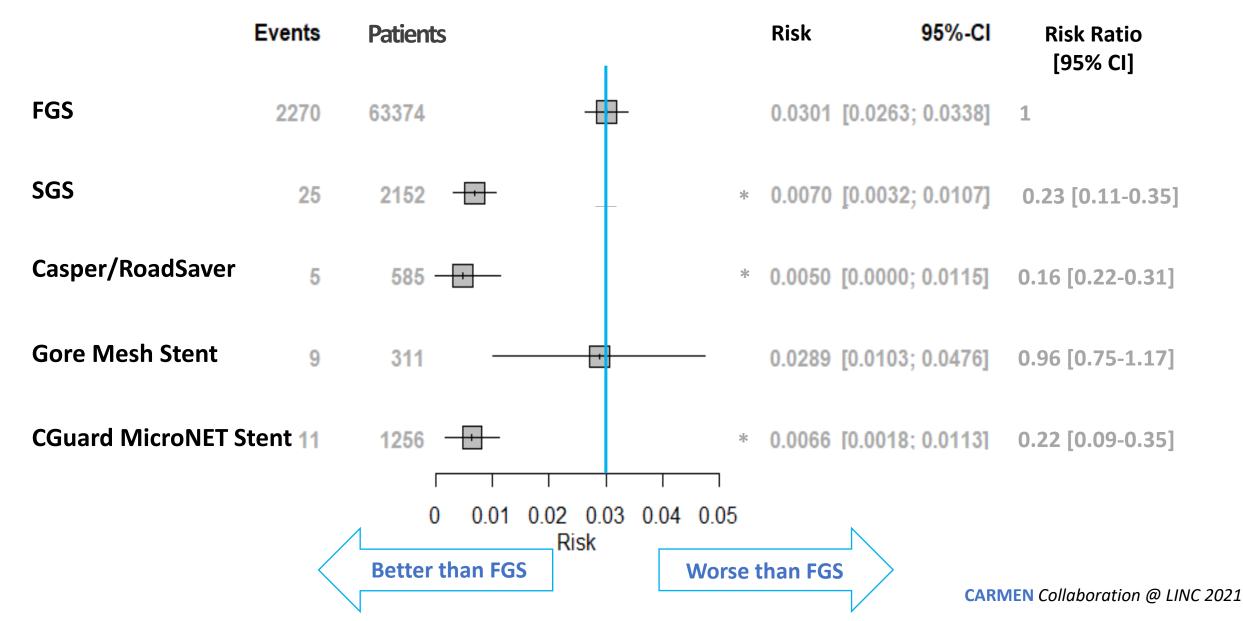
FGS – first generation stents; **SGS** – second generation stents (mesh/dual-layer)

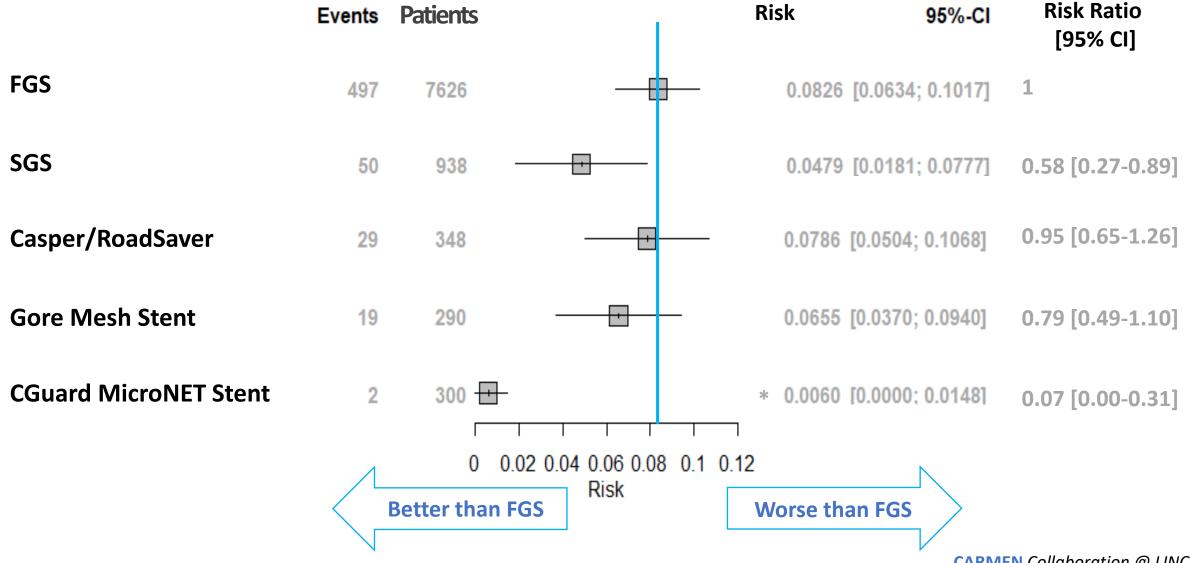
^{*}Data per total number of patients as per published patient characteristics

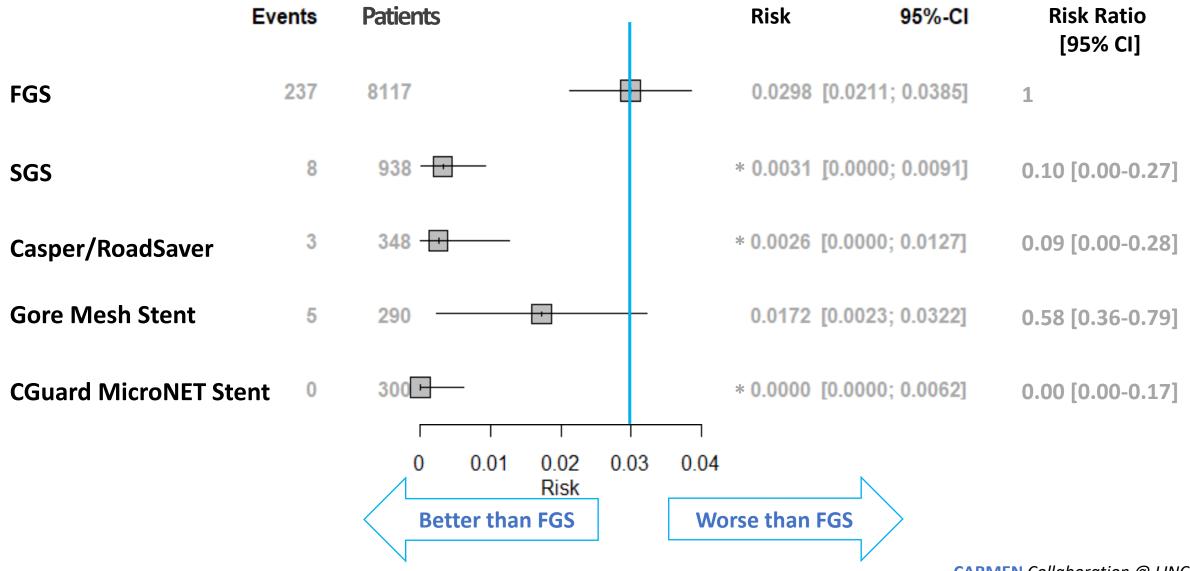

30-day Death/Stroke/MI: FGS vs SGS

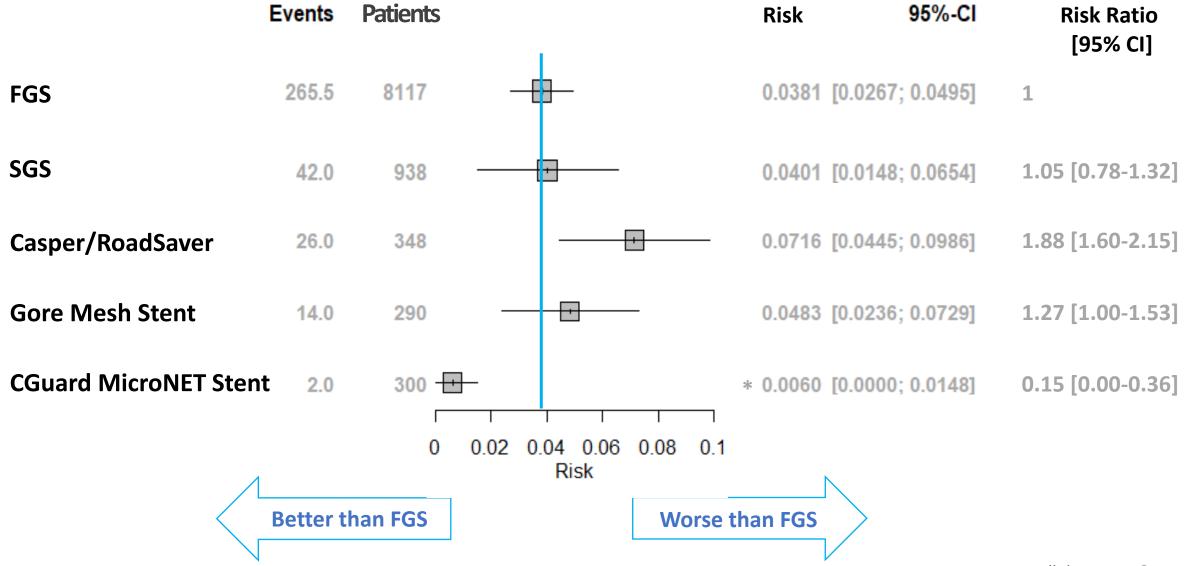
	Events	Patients	1	Risk	95%-CI	Risk Ratio [95% CI]
FGS	2953	62437		0.0411 [0.0	365; 0.0456]	1
SGS	40	2152	-	* 0.0134 [0.0	062; 0.0207[0.33 [0.17-0.48]
Casper/RoadSaver	10	585	_	* 0.0133 [0.0	000; 0.0266]	0.32 [0.14-0.51]
Gore Mesh Stent	15	311		0.0482 [0.0	244; 0.0720]	1.17 [0.94-1.41]
CGuard MicroNET Sten	t 15	1256	1 1 1	* 0.0108 [0.0	048; 0.0169]	0.26 [0.12-0.41]
	1	0 0	02 0.04 0.06 0.08	0.1		
	Bett	ter than FGS	Risk	se than FGS		
Patient numbers are as per endpoint(s) data					CA	RMEN Collaboration @ LING


30-day Death/Stroke/MI: open-cell FGS vs SGS


30-day Death/Stroke/MI: close-cell FGS vs SGS


30-day **Stroke**: FGS vs SGS


12-month Ipsilateral Stroke/ISR: FGS vs SGS


12-month **Ipsilateral Stroke**: FGS vs SGS

12-month ISR: FGS vs SGS

SGS vs <u>CEA</u>

Purpose

Is there a difference in 30-day
12-month outcomes

for SGS vs CEA?

CEA vs SGS meta-analysis

Major RCTs Involving CEA

1. CEA pooled data

SAPPHIRE

EVA 3S

SPACE-1

ICSS

CREST

ACST-1

ACT-1

Manhaim

SPACE-2

CEA in Contemporary Clinical Practice

2. CEA in Vascular Quality Initiative (VQI) database*

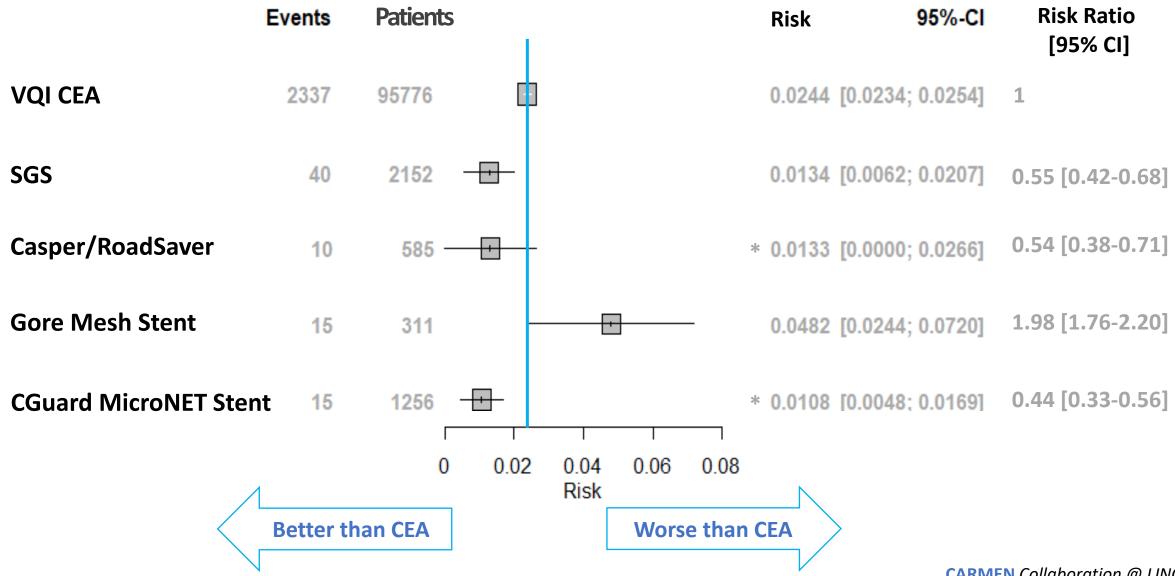
^{*} Dakour-Aridi H, et al. *Ann Vasc Surg.* 2020;65:1-9 Columbo JA, et al. *J Vasc Surg.* 2019;69:104-109

CEA vs SGS: Populations Characteristics

	RCTs CEA	VQI CEA	SGS	p RCTs-CEA vs SGS	p VQI-CEA vs SGS
No of studies	9	2	14	-	-
No of patients	5,335*	95,776*	2,152*	-	-
Age [mean] ± SD	69.4 (1.5)	71	71.9 (2.5)	0.03	-
Male [%]	69%	61%	73%	0.71	0.29
Symptomatic [%]	37%	23%	41%	0.75	0.83
Diabetic [%]	29%	35%	32%	0.44	0.99
CAD [%]	41%	27%	47%	0.75	0.35
AF [%]	3%	nd	3%	1.0	-
Contralateral occlusion [%]	7%	nd	16%	0.56	-

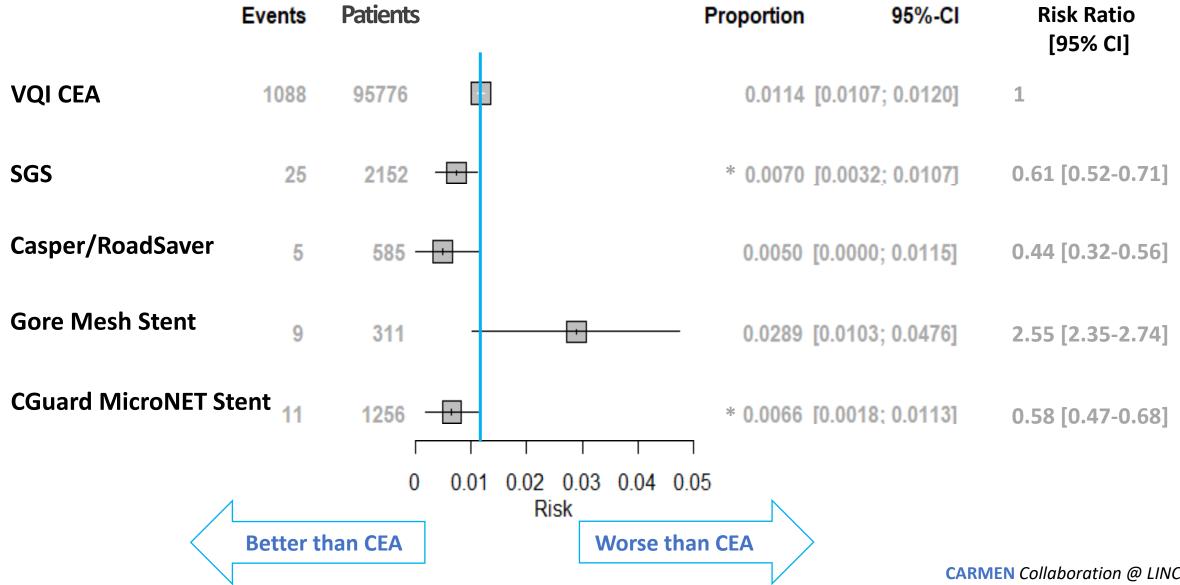
FGS – first generation stents; **SGS** – second generation stents (mesh/dual-layer)

^{*} as per published characteristics of study patients


30-day Death/Stroke/MI: RCT CEA vs SGS

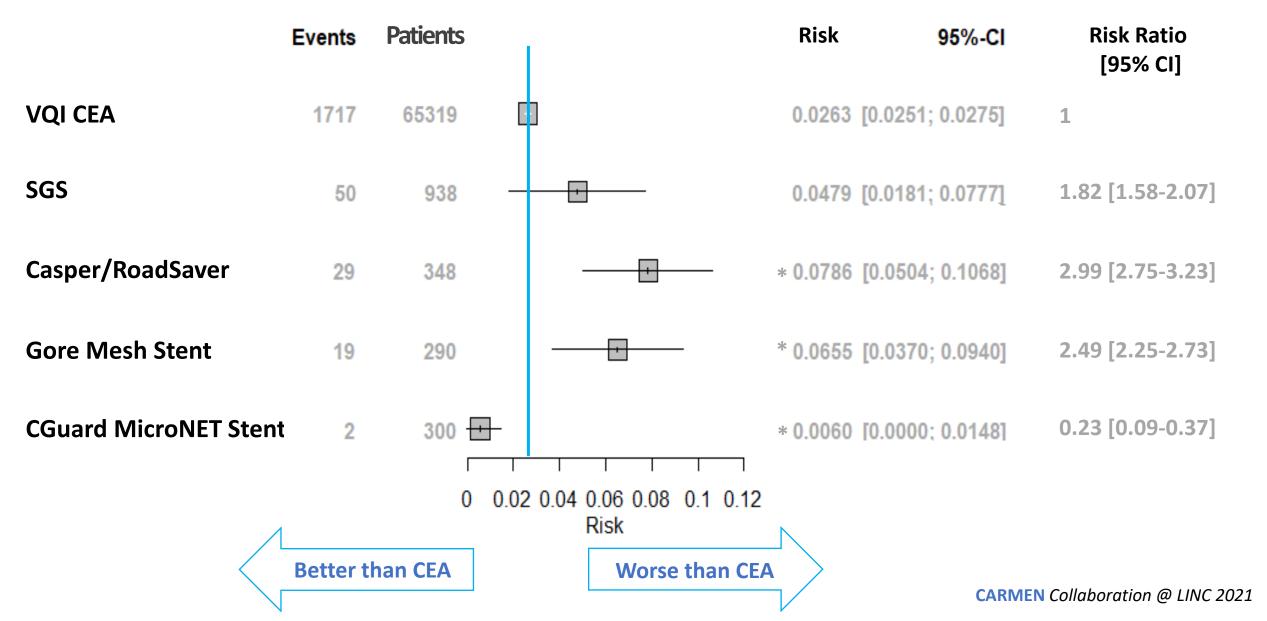
	Events	Patients	Risk	95%-CI	Risk Ratio [95% CI]
RCT CEA	233	5335	0.0403 [0.03	05; 0.0501]	1
SGS	40	2152	* 0.0134 [0.00	62; 0.0207]	0.33 [0.15-0.52]
Casper/RoadSaver	10	585	* 0.0133 [0.00	00; 0.0266]	0.33 [0.12-0.54]
Gore Mesh Stent	15	311	0.0482 [0.02	44; 0.0720]	1.20 [0.94-1.45]
CGuard MicroNET Stent	15	1256	* 0.0108 [0.00	48; 0.0169]	0.27 [0.09-0.45]
	Bet	0 0.02 0.04 0.06 tter than CEA Risk We	0.08 orse than CEA	CARME	EN Collaboration @ LINC 2021

30-day Death/Stroke/MI: VQI CEA vs SGS


30-day Stroke: RCT CEA vs SGS

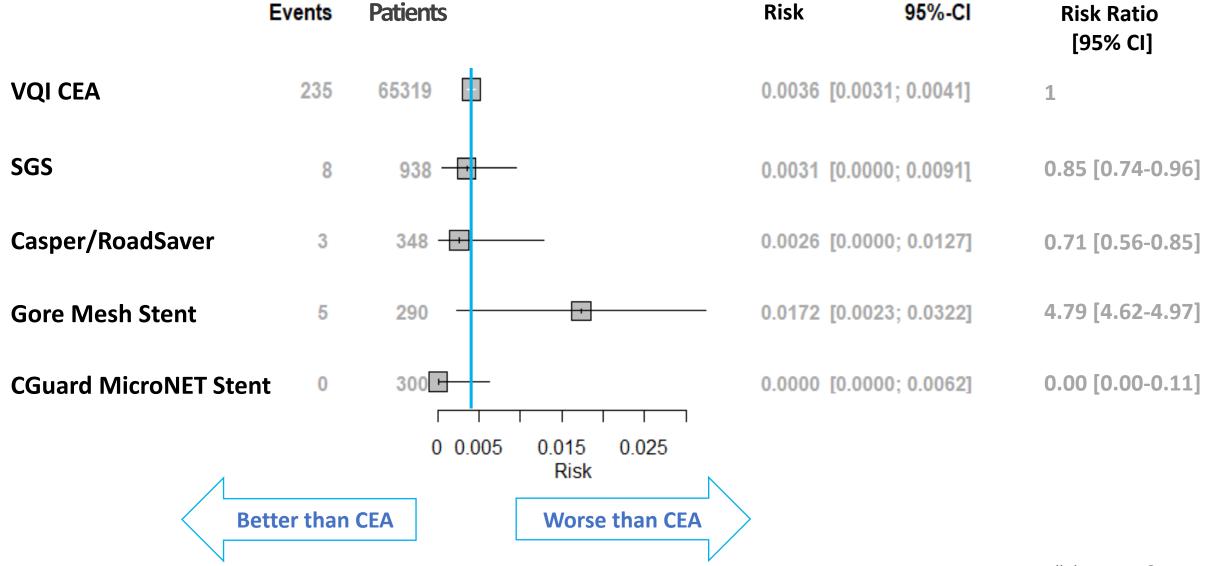
	Events	Patients				Risk	9)5%-CI	Risk Ratio [95% CI]
RCT CEA	143	5335	-	-		0.0252	[0.0185; 0	0.0320]	1
SGS	25	2152				* 0.0070	[0.0032; 0	0.0107]	0.28 [0.13-0.42]
Casper/RoadSaver	5	585 —				* 0.0050	[0.0000; 0).0115]	0.20 [0.03-0.36]
Gore Mesh Stent	9	311		-		0.0289	[0.0103; 0).0476]	1.15 [0.92-1.37]
CGuard MicroNET	Stent 11	1256	-	T	<u> </u>	* 0.0066	[0.0018; 0).0113]	0.27 [0.11-0.41]
	1	0			0.04 0.05	N			
		Better tha		isk _	Worse that	an CEA	>		
								CARMEN	Collaboration @ LINC 2021

30-day Stroke: VQI CEA vs SGS


1-year Ipsilateral Stroke/Restenosis: RCT CEA vs SGS

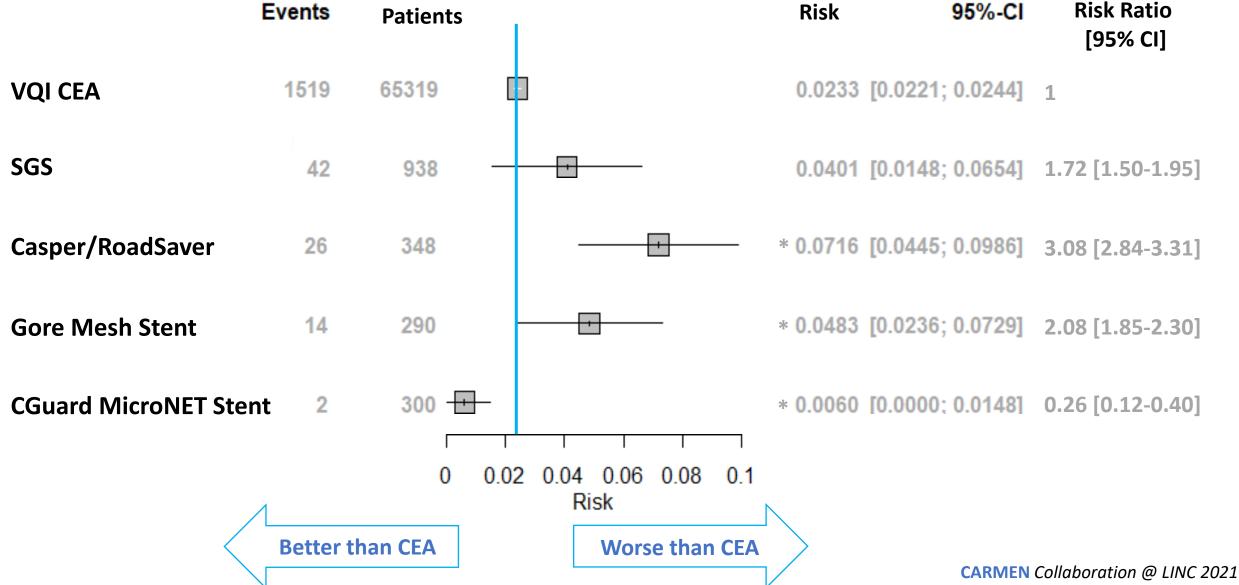
	Events	Patients		Risk	95%-CI	Risk Ratio [95% CI]
RCT CEA	141	3971		0.0409 [0.02	248; 0.0571]	1
SGS	50	938		0.0479 [0.0	181; 0.0777]	1.17 [0.87-1.47]
Casper/RoadSaver	29	348		* 0.0786 [0.0	504; 0.1068]	1.92 [1.63-2.22]
Gore Mesh Stent	19	290	-	0.0655 [0.03	370; 0.0940]	1.60 [1.31-1.90]
CGuard MicroNET Stent	2	300		* 0.0060 [0.00	000; 0.0148]	0.15 [-0.07-0.37]
		0 0.	02 0.04 0.06 0.08 0.1 0.12	2		
			Risk			
	Be	tter than CEA	Worse than (CEA		
					CARMEN Con	laboration @ LINC 2021

1-year Ipsilateral Stroke/Restenosis: VQI CEA vs SGS


1-year Ipsilateral Stroke: RCT CEA vs SGS

E	vents	Patients	Risk	95%-CI	Risk Ratio [95% CI]
RCT CEA	49	3971	0.0101 [0.0	0046; 0.0155]	1
SGS	8	938	0.0031 [0.0	0000; 0.0091]	0.30 [0.15-0.45]
Casper/RoadSaver	3	348	0.0026 [0.0	000; 0.0127]	0.25 [0.08-0.43]
Gore Mesh Stent	5	290	0.0172 [0.0	023; 0.0322]	1.71 [1.51-1.91]
CGuard MicroNET Stent	0	300	0.000 [0.0	000; 0.0062]	0.00 [0.00-0.15]
		0 0.005 0.015 0.025 Risk			
	Bet	ter than CEA Worse than C	CEA		
	•		*	CARMEN C	follahoration @ LINC 2021

1-year Ipsilateral Stroke: VQI CEA vs SGS


1-year **Restenosis: RCT CEA** vs SGS

	Events	Patients		Risk	95%-CI	Risk Ratio [95% CI]
RCT CEA	92	3971	 	0.0260 [0.0	0143; 0.0377]	1
SGS	42	938 —		0.0401 [0.0	0.0654]	1.54 [1.27-1.81]
Casper/RoadSaver	26	348		- * 0.0716 [0.0	0445; 0.0986]	2.75 [2.48-3.03]
Gore Mesh Stent	14	290		0.0483 [0.0	0236; 0.0729]	1.86 [1.59-2.12]
CGuard MicroNET Sten	t 2	300	1 1 1	0.0060 [0.0	0000; 0.0148]	0.23 [0.03-0.43]
		0 0.02		0.1		
		then CEA	Risk	CEA		
	Better	than CEA	Worse than	LEA		CARMEN Collaboration @ LINC 2021

1-year **Restenosis: VQI CEA** vs SGS

Conclusions: 30-day outcomes

• Casper/RoadSaver and CGuard MicroNET Stent superior to FGS as a group (and superior to both open- and close-cell stents)

• **↓** stroke with Casper/RoadSaver and **↓** stroke with CGuard MicroNET Stent vs RCT-CEA and VQI-CEA

• NO class-effect of SGS in relation to FGS or CEA

Conclusions: 12-month outcomes

SGS superior to FGS

outcome driven by

- ↓ in ipsi stroke with CGuard MiroNET Stent
- ↓ in restenosis with CGuard MiroNET Stent

SGS similar to CEA in 12-month ipsilateral stroke

• SGS have a differential effect on restenosis in relation to CEA

↑ restenosis with Casper/RoadSaver and Gore Stent

NO class-effect in SGS