# The safety and effectiveness of carotid revascularization with the Acculink stent and the CGuard stent. Independent randomized study

#### Savr Bugurov, Andrey Karpenko, Pavel Ignatenko

Centre of Vascular and Hybrid Surgery
E.N. Meshalkin National Medical Research Center
of the Ministry of Health



## Disclosure

Speaker name: **Bugurov Savr** I have the following potential conflicts of interest to report: ☐ Consulting ☐ Employment in industry ☐ Stockholder of a healthcare company Owner of a healthcare company ☐ Other(s)

] I do not have any potential conflict of interest



## **Objectives**

The main objective of this randomized study was to compare the clinical outcomes and neuroprotection of conventional carotid stent versus the new MicroNet stent CGuard™

## **Hypothesis**

The study hypothesis was a significant reduction of the number of procedural and postprocedural new DW-MRI lesions after CAS with the novel CGuard™ mesh covered stent compared with the Acculink™ reference stent.

## Study design

- The SIBERIA trial was an Independent Investigator Initiated Study.
- It was a single center, open label, randomized comparison of two interventional arms.
- The study was externally monitored and imaging data were evaluated by independent core laboratory
- 100 consecutive patients were enrolled with 1y clinical FU
- DW-MRI scan at baseline, at 24-48 hour after the procedure, and at the 30-days follow-up.
- The study used the anti-embolic device **Emboshield NAV**, the pore diameter of the device is equal to the diameter of the cells of the Cguard stent (pore size 165  $\mu$ m)

#### **ENDPOINTS**

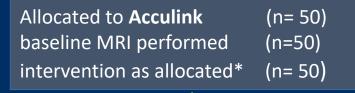
#### Primary endpoint:

New ischemic brain lesions after the procedure of carotid stenting identified by MRI within 24-48 hours and 30 days.

#### Secondary endpoints:

Technical success, major neurovascular adverse events (death, stroke, myocardial infarction) developed during the procedure and within 30 days.




#### STUDY FLOWCHART

Patients screened for enrollment (n=159)

Randomized (n= 100)

n= 46 not meeting inclusion criteria\$

n= 13 declined treatment allocation through randomization



allocation

Allocated to **CGuard** (n= 50) baseline MRI performed (n=50) intervention as allocated\* (n= 50)

Post-procedural MRI performed(n=50) Analyzed for primary endpoint(n=50)

procedure

Post-procedural MRI performed(n=50)
Analyzed for primary endpoint(n=50)

Vital status (n=50)MRI FU  $(n=47)^{\&}$ 

30d follow-up

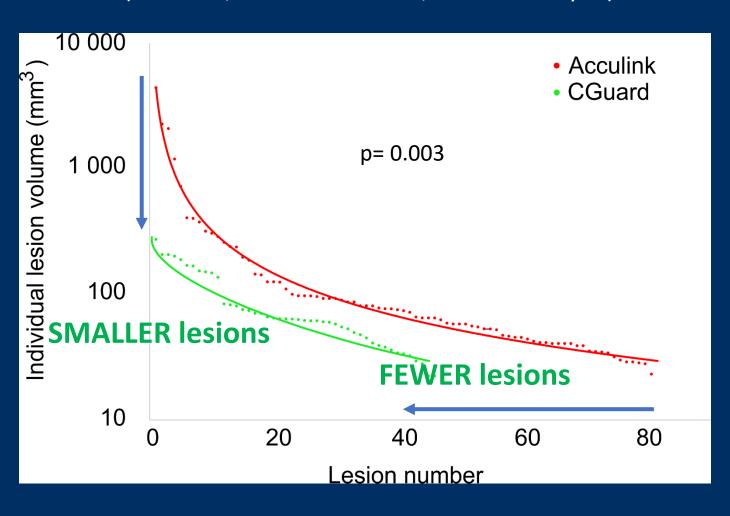
Vital status (n=50) MRI FU (n= 49)#

- \* all CAS with EmboShield NAV6 as per the Centre routine
- \$ atrial fibrillation (n=14)
  - severe renal failure (n=12)
  - restenotic lesion (n=9)
  - MRI contraindication (n=11)

& 2 patients declined full clinical follow-up due to travel distance, MRI scanner not functional in 1 – the patient declined to visit

# 1 MRI scan Corelab-defined inevaluable due multiple artifacts




#### **CLINICAL AND LESION CHARACTERISTICS**

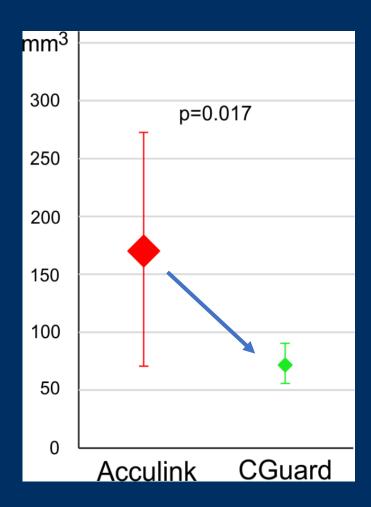
|                                                          | ACCULINK n=50 | CGUARD n=50 | Р    |
|----------------------------------------------------------|---------------|-------------|------|
| Age, years [range]                                       | 67 [62;72]    | 65 [61;69]  | 0.27 |
| Gender, (male) n (%)                                     | 35 (70 %)     | 38 (76%)    | 0.65 |
| Coronary heart disease, n (%)                            | 42 (88 %)     | 39 (78 %)   | 0.61 |
| Previous coronary revascularization (CABG or PCI), n (%) | 25 (50 %)     | 22 (32 %)   | 0.69 |
| Chronic heart failure, n (%)                             | 44 (88 %)     | 45 (90 %)   | 1    |
| Diabetes mellitus treatment, n (%)                       | 8 (16 %)      | 10 (20 %)   | 0.79 |
| Arterial hypertension, n (%)                             | 49 (98 %)     | 48 (96 %)   | 1    |
| Current smoking, n (%)                                   | 20 (40 %)     | 17 (34%)    | 0.67 |
| Peripheral arterial disease, n (%)                       | 17 (34%)      | 15 (30%)    | 0.83 |
| Ipsilateral stroke ≤ 6m, n (%)                           | 6 (12%)       | 11 (22%)    | 0.18 |
| Ipsilateral TIA ≤ 6m, n (%)                              | 3 ( 6.0 %)    | 5 (10 %)    | 0.46 |
| Contralateral carotid artery stenosis ≥50%; n (%)        | 9 (18%)       | 18 (36%)    | 0.75 |
| Contralateral carotid artery occlusion; n (%)            | 3 (6.0%)      | 8 (16%)     | 0.11 |
| Degree of stenosis (QCA, % [range])                      | 76 [67;88]    | 75 [72;89]  | 0.72 |
| Affected side right, n (%)                               | 27 (54 %)     | 30 (60%)    | 0.77 |

#### **RESULTS**

#### **DW-MRI embolism at 48h**

(raw data, external CoreLab, blinded analysis)

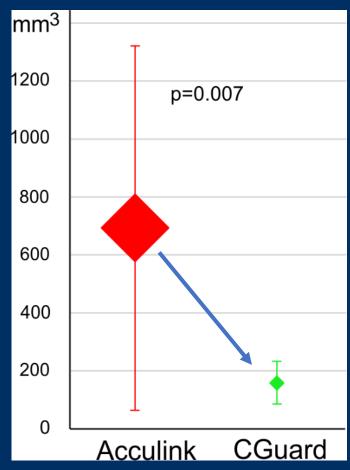





#### **RESULTS**

#### **DW-MRI** embolism at 48h

(external CoreLab, blinded analysis)


#### **PRIMARY ENDPOINT**

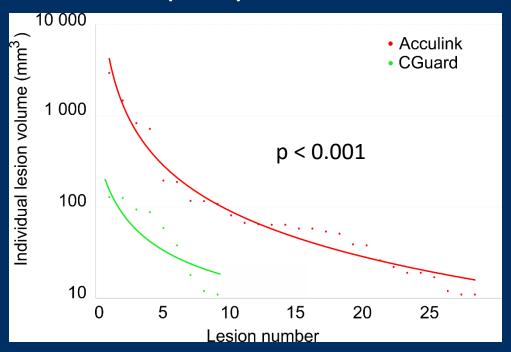


57% reduction in lesion (per-patient) average volume

#### **TOTAL LESION VOLUME**

per-patient




4.5-fold reduction in **total volume** of periprocedural lesions (per-patient)



(bars are 95%CI)

## **RESULTS**MRI and Clinical outcomes at 30 days

## **PERSISTENT** Cerebral Lesions (FLAIR)



**CGuard** arm: **No new DW-MRI lesions** at 30 days

Number 6 CGuard

O

p = 0.030

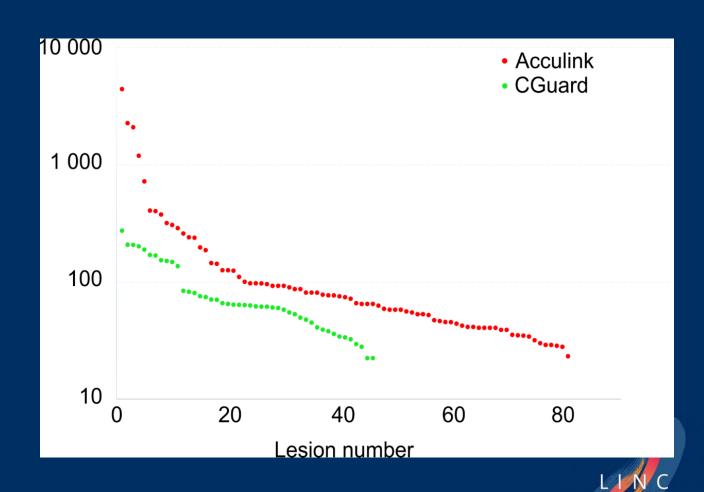
**CGuard** arm: **No MACNE** at 30 days

Acculink CGuard
Stroke 2 0
Myocardial Infarction 1 0

## **CLINICAL OUTCOMES after 1 year**

|                  | ACCULINK n=50 | CGUARD n=50 | P    |
|------------------|---------------|-------------|------|
| Restenosis       | 2 (4%)        | 0 (0%)      | 0.49 |
| Vessel occlusion | 1 (2%)        | 0 (0%)      | 1    |
| Deaths           | 2 (4%)        | 1 (2%)      | 1    |
| TOTAL MACE       | 10 (20%)      | 1 (2%)      | 0.2  |




#### CONCLUSION

In a randomized, controlled, externally monitored clinical trial with independent data analysis,

**MicroNET-covered carotid stent** – in relation to a classic (single-layer) carotid stent:

- reduced 4.5-fold the magnitude of peri-procedural silent brain infarcts volume
- abolished post-procedural silent infarcts that, in contrast, were on-going with the classic stent

These findings may impact decisionmaking in carotid revascularization for primary and secondary stroke prevention, including stent type selection

