

Novel PARADIGM in carotid revascularization:

Prospective evaluation of All-comer pe<u>R</u>cutaneous cAroti<u>D</u> revascularization in symptomatic and Increasedrisk asymptomatic carotid artery stenosis using the CGuard[™] Micronet-covered embolic prevention stent system

P. MUSIALEK¹, A. MAZUREK¹, M. TRYSTULA², A. BORRATYNSKA³, A. LESNIAK-SOBELGA¹, M. URBANCZYK⁴, RP. BANYS⁴, A. KOZANECKI¹, P. WILKOLEK¹, A. BRZYCHCZY², L. PARTYKA⁵, W. ZAJDEL⁶, K. ZMUDKA⁶, P. PODOLEC¹

(1) Jagiellonian University Dept. Cardiac & Vascular Diseases, John Paul II Hospital, (2) Dept Vascular Surgery, John Paul II Hospital;
 (3) Neurology Outpatient Dept., John Paul II Hospital, Krakow; (4) Dept. Radiology, John Paul II Hospital; (5) KCRI, Krakow,
 (6) Jagiellonian University Dept. Interventional Cardiology, John Paul II Hospital, Krakow, POLAND

Jagiellonian University Dept. of Cardiac & Vascular Diseases John Paul II Hospital, Krakow, Poland

Novel PARADIGM in carotid revascularization

P. MUSIALEK¹, A. MAZUREK¹, M. TRYSTULA², A. BORRATYNSKA³, A. LESNIAK-SOBELGA¹, M. URBANCZYK⁴, RP. BANYS⁴, A. KOZANECKI¹, P. WILKOLEK¹, A. BRZYCHCZY², L. PARTYKA⁵, W. ZAJDEL⁶, K. ZMUDKA⁶, P. PODOLEC¹

(1) Jagiellonian University Dept. Cardiac & Vascular Diseases, John Paul II Hospital, (2) Dept Vascular Surgery, John Paul II Hospital;
 (3) Neurology Outpatient Dept., John Paul II Hospital, Krakow; (4) Dept. Radiology, John Paul II Hospital; (5) KCRI, Krakow,
 (6) Jagiellonian University Dept. Interventional Cardiology, John Paul II Hospital, Krakow, POLAND

Jagiellonian University Dept. of Cardiac & Vascular Diseases John Paul II Hospital, Krakow, Poland

Speaker's name: Piotr Musialek

☑ I have the following potential conflicts of interest to report:

Advisory Board participation: InspireMD, PENUMBRA Training / Educational Activities for MEDTRONIC Research support and KoL travel support from ABBOTT

N.B. **PARADIGM** study has been Invesigator-Initiated and Investigator-Executed (<u>no industry support</u>)

The NEED

<u>Post-procedural</u> Embolization with conventional carotid stents DW-MRI post CAS

Mean total lesion area

Schofer J et al, JACC Cardiovasc interv 2008

Timing of neuro-embolic events after CAS

D. McCormick TCT 2012, modified

Timing of neuro-embolic events after CAS

D. McCormick TCT 2012, modified

The NEED

- CEA excludes the plaque
- •In CAS, the <u>stent should</u> <u>exclude the plaque too</u>

Conventional Carotid Stent

Plaque protrusion may lead to early and late distal embolization

Columbia University Medical Center

J. Schofer, P. Musialek et al. TCT 2014

Conventional Carotid Stent

Human Carotid OCT Image Courtesy Dr Juan Rigla, MD PhD Perceptual Imaging Lab, Univerity of Barcelona

Anti - Embolic Carotid Stent

Plaque protrusion may lead to early and late distal embolization

J. Schofer, P. Musialek et al. TCT 2014

Columbia University Medical Center

CGuard[™] embolic prevention system

P. Musialek @ CX2016

CGuard[™]– Carotid Embolic Prevention System

Stent typeMicronet aperture sizeGuidewireSizes- Diameter- Length	Nitinol – self expanding 150-180 μm 0.014" 6-10mm 20-60mm
Micronet aperture size Guidewire Sizes - Diameter - Length	150-180 μm 0.014" 6-10mm 20-60mm
Guidewire Sizes - Diameter - Length	0.014" 6-10mm 20-60mm
Sizes - Diameter - Length	6-10mm 20-60mm
E Mark – March 2014	Specific, carotid-dedicated design

Anti - Embolic Carotid Stent

CGuard Embolic-Prevention Stent OCT Image (human, iv vivo) Courtesy Dr Juan Rigla, MD PhD Perceptual Imaging Lab, Univerity of Barcelona

CGuard[™] – Carotid Embolic Prevention System

Safety & Efficacy EVIDENCE: •CARENET DW-MRI & pilot clinical PARADIGM larger-scale clinical

JACC: CARDIOVASCULAR INTERVENTIONS © 2015 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION PUBLISHED BY ELSEVIER INC.

A Prospective, Multicenter Study of a Novel Mesh-Covered Carotid Stent

The CGuard CARENET Trial (Carotid Embolic Protection Using MicroNet)

Joachim Schofer, MD,* Piotr Musiałek, MD, DPHIL,† Klaudija Bijuklic, MD,* Ralf Kolvenbach, MD,‡ Mariusz Trystula, MD,† Zbigniew Siudak, MD,†§ Horst Sievert, MD||

ABSTRACT AT B/L, 24-48h after CAS, and at 30 days

OBJECTIVES This study sought to evaluate the feasibility of the CGuard Carotid Embolic Protective Stent system—a novel thin strut nitinol stent combined with a polyethylene terephthalate mesh covering designed to prevent embolic events from the target lesion in the treatment of carotid artery lesions in consecutive patients suitable for carotid artery stenting.

BACKGROUND The risk of cerebral embolization persists throughout the carotid artery stenting procedure and remains during the stent healing period.

METHODS A total of 30 consecutive patients (age 71.6 \pm 7.6 years, 63% male) meeting the conventional carotid artery stenting inclusion criteria were enrolled in 4 centers in Germany and Poland.

CARENET DW-MRI analysis^{*}

DW-MRI analysis @ 48 hours				
	CARENET (n=27)	PROFI (all) (n=62)	ICSS⁺ (n=56)	
Incidence of new ipsilateral lesions	37.0%	66.2%	68.0%	
Average lesion volume (cm ³)	0.039	0.375	-	
Maximum lesion volume (cm ³)	0.415	ノ		

>10-fold reduction in cerebral lesion volume

*External Core Lab analysis (US)

Bijuklic et al. *JACC*, 2012; Bonati et. al, *Lancet Neurol* 2010 † bilateral lesions

J. Schofer, P. Musialek et al. JACC Intv 2015;8:1229-34

CARENET DW-MRI analysis^{*}

All but one peri-procedural ipsilateral lesions

RESOLVED

DW-MRI analysis @ 30 days*			
Incidence of new ipsilateral lesions	1		
Average lesion volume (cm ³)	0.08 ± 0.00		
Permanent lesions at 30 days	1		

*External Core Lab analysis (US)

J. Schofer, P. Musialek et al. JACC Intv 2015;8:1229-34

<u>Prospective evaluation of All-comer</u> pe<u>R</u>cutaneous c<u>A</u>roti<u>D</u> revascularization in symptomatic and Increased-risk asymptomatic carotid artery stenosis using the C<u>G</u>uard[™] <u>M</u>icronet-covered embolic prevention stent system

The PARADIGM Study

Objective

 to evaluate feasibility and outcome of <u>routine</u> anti-embolic stent system use in <u>unselected, consecutive</u> patients referred for carotid revascularization (<u>'all-comer</u>' study)

Study questions:

- (1) feasibility of routine use of CGuard MN-EPS in an all-comer carotid stenosis requiring revasc.
- (2) CGuard EPS device/procedure acute success rate ?
- (3) safety and 30-day clinical efficacy
- (4) proportion of all-comer carotid stenosis patients that can be treated through the endovascular route
- (5) feasibility of MN-EPS post-dilatation optimization ("CEA-like" effect of CAS)

Methods:

- academic cardio-vascular centre
- investigator-initiated study
- not industry-funded
- all-comer inclusion (target = 101 consecutive patients)
- all referrals tracked
- routine consultation and management pathways
- qualitative and quantitative lesion & stent evaluation
- investigator-independent neurological and angiographic evaluation, and external study data verification

The world-leading Course in Interventional Medicine

Methods (cont'd):

- <u>ASYMPTOMATIC</u> patients treated interventionally only if at /stroke risk
- established lesion-level increased-risk crieria used:
 - thrombus-containing
 - documented progressive
 - irregular and/or ulcerated
 - contralateral ICA occlusion/stroke
 - asymptomatic ipsilateral brain infarct

AbuRahma A et al. *Ann Surg*. 2003;238:551-562. Ballotta E et al. *J Vasc Surg* 2007;45:516-522. Kakkos SK et al. (ACSRS) *J Vasc Surg*. 2009;49:902-909. Lovett JK et al. *Circulation* 2004;110:2190-97 Nicolaides AN et al. *J Vasc Surg* 2010;52:1486-96. Taussky P et al. *Neurosurg Focus* 2011;31:6-17.

Methods: The CAS Procedure

- EPD use mandatory; EPD selection according to the 'Tailored CAS' algorithm^{*}
- Liberal postdilatation accepted in order to maximize potential for 'endovascular full reconstruction' (minimizing residual stenosis)
 - NB. 1. DWI evidence of effective MicroNet prevention against cerebral embolization (CARENET/PROFI)
 - 2. Residual stenosis after CAS as independent predictor of in-stent restenosis

Van Laanen J et al. *J Cardiovasc Surg*Cosottini M et al. *Stroke Res*Musialek P et al. *J Endovasc Ther*Wasser K et al. *J Neurol*

 * Pieniazek P, Musialek P et al. J Endovasc Ther 2008;15:249-62. Cremonesi A et al. EuroInervention 2009;5:589-98.
 Pieniazek P, Musialek P et al. J Endovasc Ther 2009;16:744-51.

PARADIGM: investigator – independent

external source data verification

Excellence in clinical research

external angiographic analysis

external statistical analysis

The world-leading Course in Interventional Medicine

Study endpoints:

• **PRIMARY** a composite of **death**, **stroke** (major/minor) and **MI** in the peri-procedural period and at 30 days

• SECONDARY

(1) acute study device success defined as ability to treat the index carotid lesion using the study device (CGuard MN-EPS) successfully delivered and deployed at the lesion site, obtaining residual diameter stenosis <30% by QA
(2) procedural success defined as device success in absence of any vascular complication that would require interventional management

- (3) in-stent velocities/patency (Duplex)
- (4) long-term clinical efficacy:

stroke and stroke-related death

- 30 days
- every 12 months
 up to 5y

The world-leading Course in Interventional Medicine

in Interventional Medicine

PARADIGN 2016 LATE BREAKING TRIALS	A study: revascularisation natients <u>for</u> carotid revascu	on flow chart larisation
(93%)	(1%)	(6%)
CAS in n=100 patients	CAS+CEA in n=1 patient	CEA in n=7 patients
(bilateral in 5)	(LICA-CEA and RICA-CAS) hybrid management	n=1 eGRF 14 → no contrast n=2 hostile access n=1 major ICA kink/loop n=1 severe aortic valve disease
106 ICAs treated endovascularly in 101 patients using exclusively the MicroNet-covered embolic prevention stent system		+calcific LICA (AVR+CEA) n=1 floating thrombus in CCA n=1 ICA diameter <2.0 mm +contralateral ICA occlusion

Table 1. Clinical characteristics of the study patients (n=101).

Age, mean±SD (min-max)	69±7 (51-86)	
Male, % (n)	70% (71)	
Symptomatic, % (n)	55% (55)	
Symptomatic ≤14 days, % (n)	22%* (12)	
Acutely symptomatic (emergent CAS), % (n)	14%* (9)	
Index lesion (CAS), % (n)		
RICA	51% (52)	
LICA	49% (49)	
RICA+LICA	5% (5)	
CAD, % (n)	63% (64)	
h/o MI, % (n)	32% (32)	
CABG or PCI in the past, % (n)	40% (40)	
PCI as bridge to CAS, % (n)	18% (18**)	
AFib (h/o or chronic), % (n)	9% (9)	
Diabetes, % (n)	41% (41)	
h/o neck or chest radiotherapy, % (n)	6% (6)	
*proportion of symptomatic patients; **simultaneous (one-stage)		

PCI+CAS in 4 patients; h/o: history of

Table 2. Quantitative lesion characteristics (n=106), NPD type, and CGuard MN-EPS in situ characteristics.

	All (n=106 lesions)	Symptomatic n=55	Asymptomatic n=51	<i>p</i> -value
Before CAS				
PSV, m/s	3.7±1.2	3.7±1.1	3.7±1.2	0.964
EDV, m/s	1.2±0.5	1.1±0.5	1.2±0.5	0.268
Diameter stenosis % (QA)	83±9	80±9	86±9	0.002
CAS				
EPD type				
Proximal #	46% (49)	56% (31)	35% (18)	0.030
Distal *	54% (57)	44% (24)	65% (33)	
* Emphasized (n. 11), Either Milling (n. 15), Emider (n. 21)				

ICA reference diameter

4.99 ± 0.36mm (from 4.27 to 6.02 mm)

Lesion length

19.9 ± 5.8mm (from 8.19 to 30.25 mm)

* Emboshield (n=11); FilterWire (n=15); Spider (n=31)
 # Gore FlowReversal (n=6) or flow reversal with MoMa (n=43);

Gore FlowReversal (n=6) or flow reversal with **MoMa** (n=43); (mean flow reversal time was 6min 35s, from 3min 51s to 11min 2s)

Direct (primary) stenting in 9 (8.5%); predilatation in 97 (91.5%) lesions Postdil. balloon: ø 4.5mm (n=9); ø 5.0mm (n=55); ø 5.5mm (n=37); ø 6.0mm (n=5)

Table 2. (cont'd) CGuard MN-EPS in situ characteristics.

	All (n=106 lesions)	Symptomatic n=55	Asymptomatic n=51	<i>p</i> -value
After CAS				
Stent length (QA, CoreLab) [§]				N/A
Nominal 30 mm	29.82±0.68	29.83±0.76	29.80±0.59	
(min-max)	(27.83-32.62)	(27.83-32.62)	(28.83-31.89)	
Nominal 40 mm	39.89±0.59	39.80±0.70	39.97±0.51	
(min-max)	(38.88-41.43)	(38.88-41.43)	(39.14-41.01)	
Residual diameter stenosis	6.7±5%	6.1±5%	7.8±5%	0.262
In-stent PSV, m/s	0.68±0.29	0.64±0.26	0.72±0.31	0.121
in-stent EDV, m/s	0.18±0.08	0.16±0.07	0.19±0.08	0.087

[§]In three cases two overlapping stents were used to cover the whole lesion length; these are not included in the in situ stent length evaluation. N/A: not applicable

=> no foreshortening, no elongation, placement precision

=> no concern

 CAS feasibility using the study-tested MicroNet-covered embolic prevention stent system 100% CAS (n= 106)

(ie, no cross-over to other stents or other carotid stent use during the whole study period)

 Device success 	99.1%	(n=105) [*]
 Procedure success 	99.1%	(n=105) [*]
 Transient dopamine infusion 	15.1%	(n = 16)
 Debris in EPD 	17.9%	(n = 19)
 Vascular plug closure 	53.8%	(n = 57)
 Access site complications 	0%	(n = 0)

* in 1 case no stent post-dilatation was performed due to profound bradycardia-asystole, and 46% residual diameter stenosis was left (ie, above the Protocol-defined threshold <30% DS for "device success")

ECA patency data

6/106 (5.6%) ECAs were occluded on the index side prior to CAS 3/100 (3.0%), with severe stenosis prior to CAS, occluded at CAS NO ECA occlusion occurred between CAS and 30 days

30-day neurological, duplex, and cardiologic follow up was executed in 100% patients (101) and arteries (106)

Clinical Results (MACNE)	
• 0 peri-procedural death/major stroke/MI	0%
• 1 peri-procedural minor stroke*	0.9%
• 0 new clinical events by 30 days	0%
(100% follow-up, independent neuro evaluati	ion)

*One patient, with symptomatic RICA stenosis (minor right-hemispheric stroke 2 months prior to CAS), had **hypotonia** and transient, fluctuating cognitive dysfunction at 24-48h after CAS. The patient had additional neurologic evaluation on discharge (day 7) that showed **no change in NIH-SS [3] and no change in modified Rankin scale [1] against 48h (and baseline) evaluation**. CT scan on day 2 showed no new cerebral lesions but day 6 CT indicated **an extension of the prior lesion in the right hemisphere**.

The event, in **absence of right haemispheric symptoms and in absence of any clinical sequelae**, was CEC–adjudicated as 'minor stroke in relation to CAS'.

Effect of the Distal-Balloon Protection System on

euro

CAS (and CEA) are –and *will* remain– emboli-generating procedures

PARADIGM Strengths

- No exclusion criteria (all-comer, consecutive, incl. stroke-inevolution)
- Asymptomatics revascularised only if at stroke risk
- NeuroVascular Team decision-making
- Independent neurologist evaluation
- 100% follow-up
- Independent source data verification (SDV) / monitoring
- Independent angiographic analysis
- Independent statistical analysis
- External adjudication of clinical events (CEC)

• Real-life study • Controlled study

Endovascular Solution for All-Comers

Endovascular Reconstruction of the Carotid Bifurcation Prevention of embolism, High radial force, Conformability

Using the MicroNet-covered carotid stent technology, <u>ROUTINE</u> <u>ENDOVASCULAR</u> carotid stenosis revascularization is

- safe
- fully compatible with routine CAS, including all NPD types
- effective
- can be used to treat >90% all-comers: symptomatics (incl. strokein-evolution) and revascularization-requiring asymptomatics
- CEA-like effect: endovascular reconstruction of diseased carotid segment

Using the MicroNet-covered CGuard stent system technology, ENDOVASCULAR carotid stenosis management in PRIMARY and SECONDARY Stroke Prevention is

- Viable 🗸
- Safe and effective ${f V}$
- Applicable to >90% of all-comer patients ${f V}$
- Applicable to routine clinical practice of CAS V

CGuard Embolic-Prevention human OCT Stent Image in situ / in vivo Courtesy Dr Juan Rigla, MD PhD Perceptual Imaging Lab, Univerity of Barcelona

Novel PARADIGM in carotid revascularisation: Prospective evaluation of All-comer peRcutaneous cArotiD revascularisation in symptomatic and Increased-risk asymptomatic carotid artery stenosis using CGuard[™] Micronet-covered embolic prevention stent system

Piotr Musialek^{1*}, MD, DPhil; Adam Mazurek¹, MD; Mariusz Trystula², MD, PhD;
Anna Borratynska³, MD, PhD; Agata Lesniak-Sobelga¹, MD, PhD; Malgorzata Urbanczyk⁴, MD;
R. Pawel Banys⁴, MSc; Andrzej Brzychczy², MD, PhD; Wojciech Zajdel⁵, MD, PhD;
Lukasz Partyka⁶, MD, PhD; Krzysztof Zmudka⁵, MD, PhD; Piotr Podolec¹, MD, PhD

1. Jagiellonian University Department of Cardiac & Vascular Diseases, John Paul II Hospital, Krakow, Poland; 2. Department of Vascular Surgery, John Paul II Hospital, Krakow, Poland; 3. Neurology Outpatient Department, John Paul II Hospital, Krakow, Poland; 4. Department of Radiology, John Paul II Hospital, Krakow, Poland; 5. Jagiellonian University Department of Interventional Cardiology, John Paul II Hospital, Krakow, Poland; 6. KCRI, Krakow, Poland