Essential Update: Carotid Disease 2019

Piotr Musiałek

Jagiellonian University Dept. of Cardiac & Vascular Diseases John Paul II Hospital, Kraków, Poland

Disclosures

Proctoring/Speaker Bureau/Advisory Boards - Abbott, InspireMD, Medtronic

Research Support - Abbott (IIS)

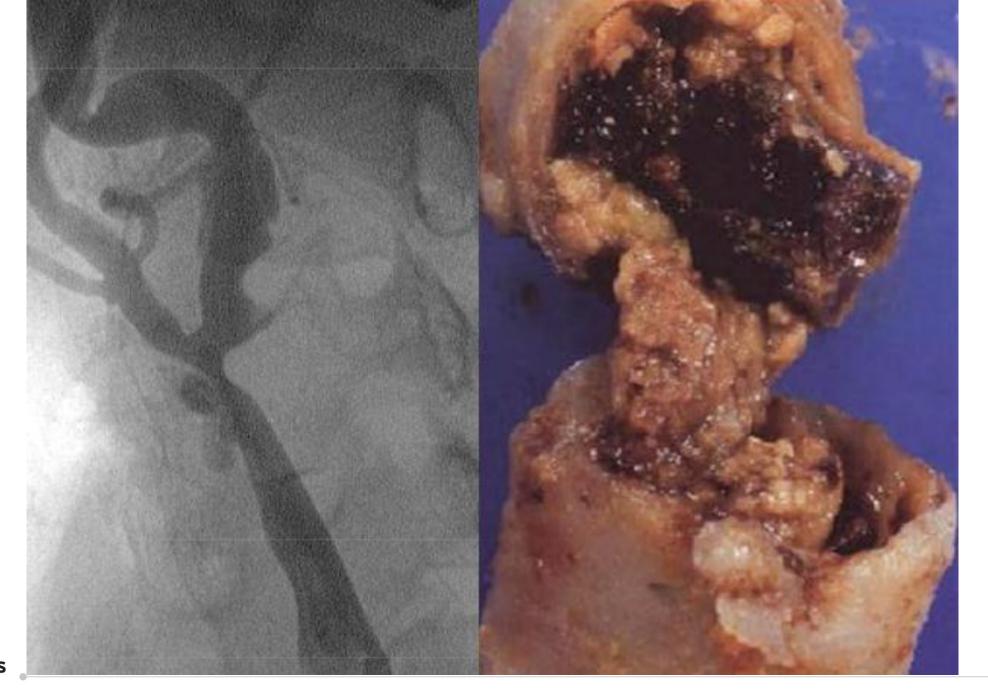
This presentation is to my best personal knowledge, without any external bias

Q1

These days, <u>asymptomatic</u> carotid stenosis is a benign pathology:

Q1

Please vote


These days, <u>asymptomatic</u> carotid stenosis is a benign pathology:

A. Yes

B. No

C. Don't know

Every *symptomatic* carotid plaque

causing cerebral infarct/stroke –

starts as an asymptomatic plaque

Point to remember #1

Every *symptomatic* carotid plaque

causing cerebral infarct/stroke –starts as an *asymptomatic* plaque

(aka. "Where are the symptomatic patients coming from?")

Essential Update: Carotid Disease 2019

The disease

Who to treat?

- How to treat? (medical therapy, surgery, stents, novel technologies)
- 2017 ESC/ESVS Guidelines: strengths and gaps

Q2

Prevalence of CS -in relation to prevalence of AFib - is

Q2

Please vote

Prevalence of CS -in relation to prevalence of AFib- is

 $A. \approx 3:1 \quad (more \ CS)$

B. $\approx 1:1$ (*similar* prevalence)

C. $\approx 1:3$ (more Afib)

Table 14-2. Modifiable Stroke Risk Factors

Factor	Prevalence, %	PAR, %*	RR	
Cigarette smoking				
Overall	19.8	12-14†	1.9	
Men	22.3			
Women	17.4			
Hypertension		‡	8	
Ages 20-34 y				
Men	13.4	99		
Women	6.2	98		
Ages 35-44 y				
Men	23.2	99		
Women	16.5	106		
Ages 45-54 y				
Men	36.2	100		
Women	35.9	103		
Ages 55-64 y				
Men	53.7	100		
Women	55.8	102		
Ages 65-74 y				
Men	64.7	100		
Women	69.6	101		
Ages ≥75 y				
Men	64.1	100		
Women	76.4	101		
Diabetes mellitus	7.3	5-27	1.8-6.0	
High total cholesterol	Data calculated for highest quintile (20%) vs lowest quintile	9.1 (5.7–13.8)	1.5 (95% CI, 1.3-1.8)	
	Continuous risk for ischemic stroke		1.25 per 1-mmol/L (38.7 mg/dL) increase	
AF (nonvalvular)				
50-59	0.5	1.5	4.0	
60-69	1.8	2.8	2.6	
70-79	4.8	9.9	3.3	
80-89	8.8	23.5	4.5	
Asymptomatic carotid stenosis	2-8	2-7§	2.0	

Atrial fibrillation

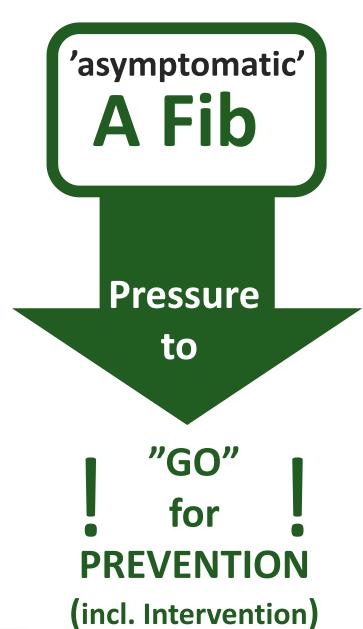
Risk of ischaemic stroke according to pattern of atrial fibrillation: analysis of 6563 aspirin-treated patients in ACTIVE-A and AVERROES

Thomas Vanassche^{1*}, Mandy N. Lauw¹, John W. Eikelboom¹, Jeff S. Healey¹, Robert G. Hart¹, Marco Alings², Alvaro Avezum³, Rafael Díaz⁴, Stefan H. Hohnloser⁵, Basil S. Lewis⁶, Olga Shestakovska¹, Jia Wang¹, and Stuart J. Connolly¹

¹Population Health Research Institute, McMaster University and Hamilton Health Sciences, 237 Barton St. E., Hamilton, O.N., Canada LBL 2X2; ²Amphia Ziekenhuls, Breda, The Netherlands; ³Instituto Dante Pazzanese de Cardiologia, São Paulo, Brazil; ⁴Estudios Clinicos Latinoamérica, Rosario, Argentina; ⁵Department of Cardiology, Johann-Wolfgang-Goethe-Universität, Frankfurt, Germany; and ⁶Cardiovascular Clinical Research Institute, Lady Davis Carmel Medical Center and the Ruth and Bruce Rappap ort School of Medicine, Technion-IIT, Halffe, Inspil.

The pattern of atrial fibrillation (AF) occurrence—paroxysmal, persistent, or permanent—is associated with progressive stages of atrial dysfunction and structural changes and may therefore be associated with progressively higher stroke risk. However, previous studies have not consistently shown AF pattern to predict stroke but have been hampered by methodological shortcomings of low power, variable event ascertainment, and variable anticoagulant use.

Methods and results


We analysed the rates of stroke and systemic embolism in 6563 aspirin-treated patients with AF from the ACTIVE-A/AVERROES databases. There was thorough searching for events and adjudication. Multivariable analyses were performed with the adjustment for known risk factors for stroke. Mean age of patients with paroxysmal, persistent, and permanent AF was 69.0 ± 9.9 , 68.6 ± 10.2 , and 71.9 ± 9.8 years (P < 0.001). The CHA2DS2-VASc score was similar in patients with paroxysmal and persistent AF (3.1 ± 1.4), but was higher in patients with permanent AF (3.6 ± 1.5 , P < 0.001). Yearly ischaemic stroke rates were 2.1, 3.0, and 4.2% for paroxysmal, persistent, and permanent AF, respectively, with adjusted hazard ratio of 1.83 (P < 0.001) for permanent vs. paroxysmal and 1.44 (P = 0.02) for persistent vs. paroxysmal Multivariable analysis identified age ≥ 75 year, sex, history of stroke or TIA, and AF pattern as independent predictors of stroke, with AF pattern being the second strongest predictor after prior stroke or TIA.

Conclusion

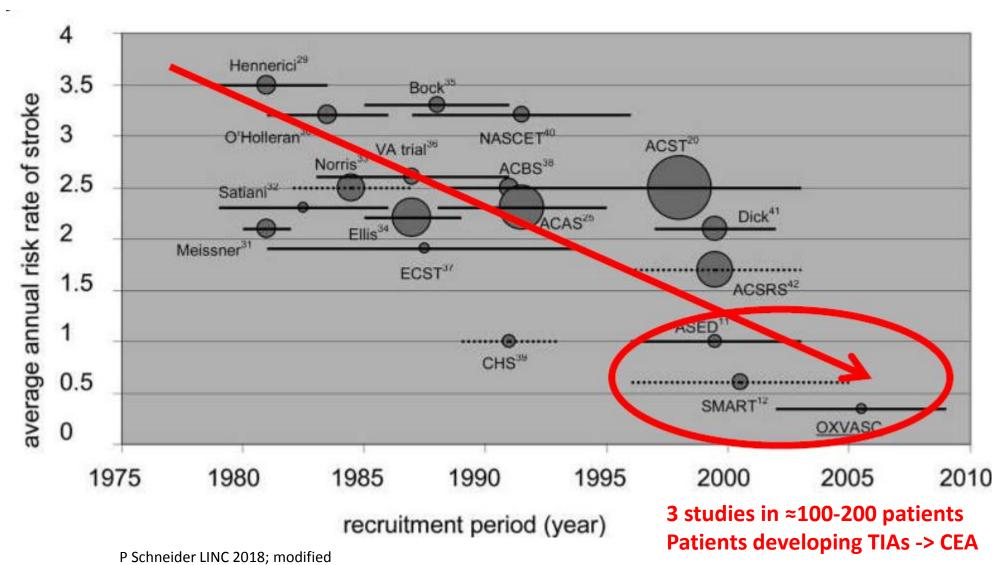
In a large population of non-anticoagulated AF patients, pattern of AF was a strong independent predictor of stroke risk and may be helpful to assess the risk/benefit for anticoagulant therapy, especially in lower risk patients.

Keywords

Atrial fibrillation • Paroxysmal • Permanent • Stroke

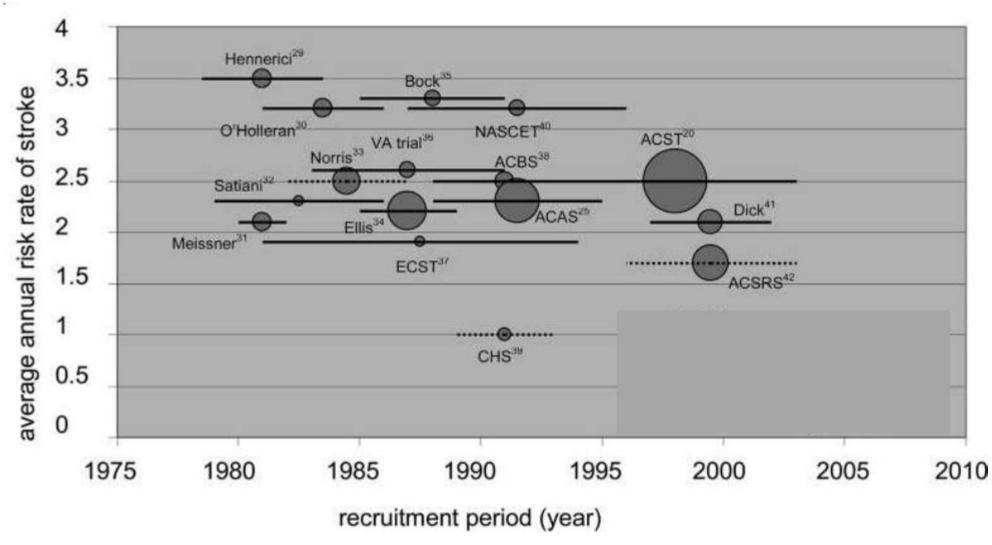
ESC Congress Paris 2019

'asymptomatic' **CAROTID STENOSIS Pressure** to "WAIT" for STROKE ("symptoms")


logic ???

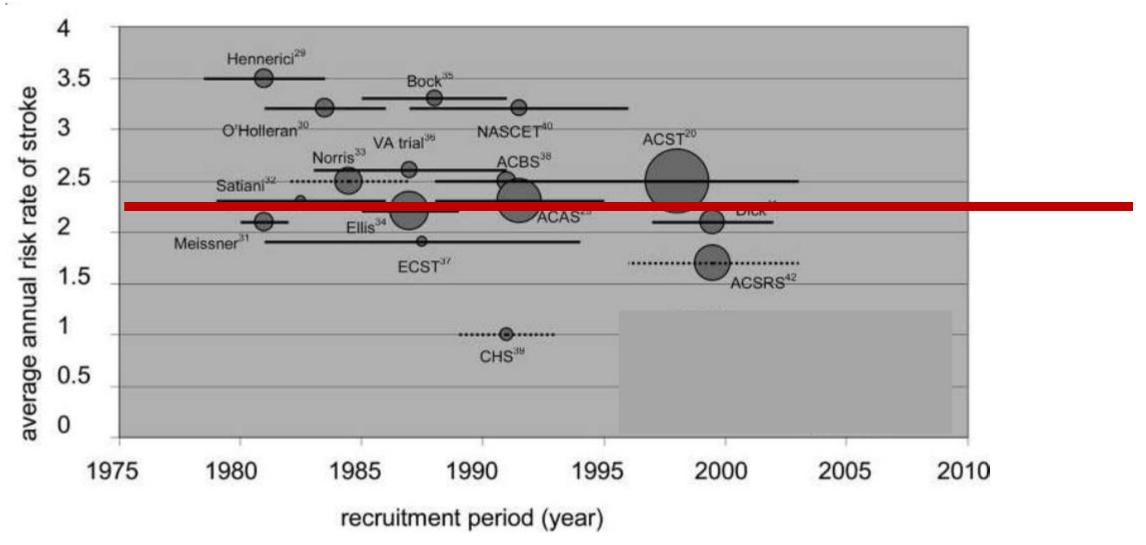
'asymptomatic' **CAROTID STENOSIS Pressure** to "WAIT" for STROKE ("symptoms")

ESC Congress Paris 2019


Why the management of asymptomatic Carotid Stenosis continues to be so controversial?

Annual stroke risk with asymptomatic carotid stenosis

ESC Congress Paris 2019


Annual stroke risk with asymptomatic carotid stenosis

P Schneider LINC 2018; modified

ESC Congress Paris 2019

Annual stroke risk with asymptomatic carotid stenosis

P Schneider LINC 2018; modified

ESC Congress Paris 2019

Annual stroke rate with asymptomatic carotid stenosis:

Contemporary cardiovascular clinic patients on OMT

2.4% per year (Conrad MF et al. J Vasc Surg 2013)

2.9% per year (Kakkos SK et al. J Vasc Surg 2014)

ESC Congress Paris 2019

Annual stroke rate with asymptomatic carotid stenosis:

Contemporary cardiovascular clinic patients on OMT

2.4% per year (Conrad MF et al. *J Vasc Surg* 2013)... 5 years... 10 years

2.9% per year (Kakkos SK et al. *J Vasc Surg* 2014)... 5 years... 10 years

ESC Congress Paris 2019

Fundamental Issue

"People" with Carotid Stenosis

Vascular Clinic Referral Patient

General Population Subject

annual ipsilateral stroke risk 2.5-3.0%

annual ipsilateral stroke risk ≈0.5%

Fundamental Issue

"People" with Carotid Stenosis

Vascular Clinic Referral Patient

General Popu--lation Subject

annual ipsilateral stroke risk 2.5-3.0%

annual ipsilateral stroke risk ≈0.5%

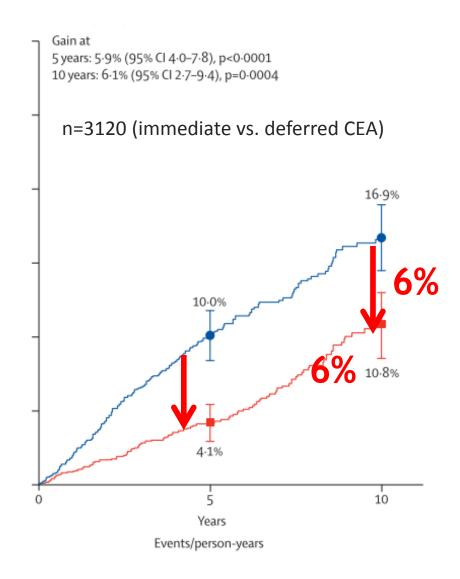
Q3 There is large-scale Level 1 evidence (Randomized Controlled Trial) that patients with asymptomatic CS benefit from intervention:

Please vote

Q3 There is large-scale Level 1 evidence (Randomized Controlled Trial) that patients with asymptomatic CS benefit from intervention:

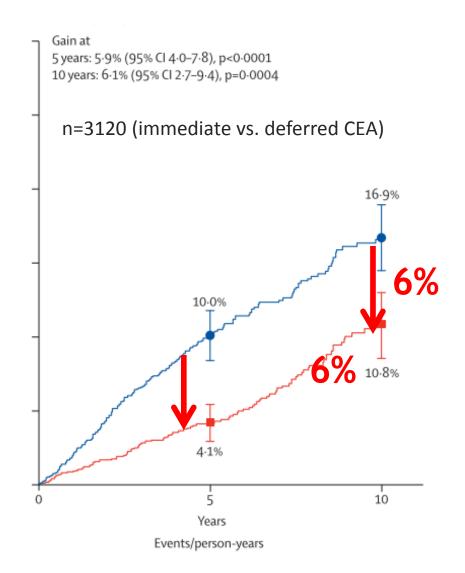
A. Yes

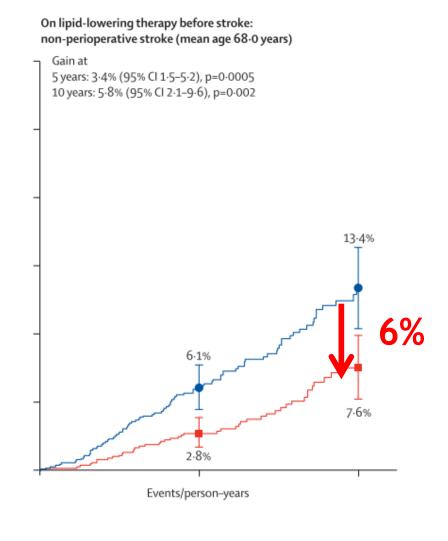
B. No


C. Don't know

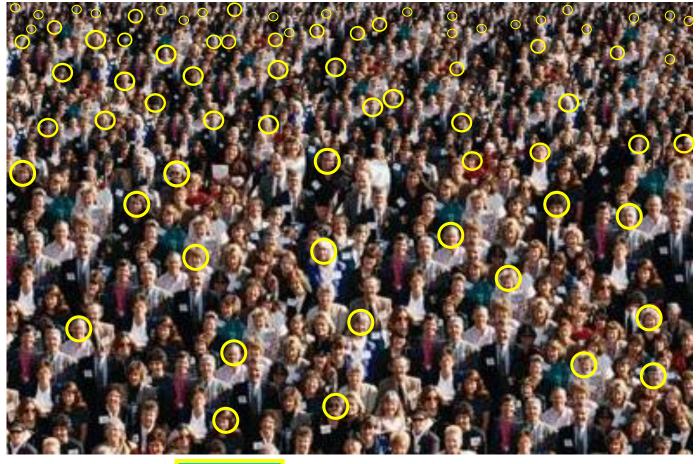
ACST-1

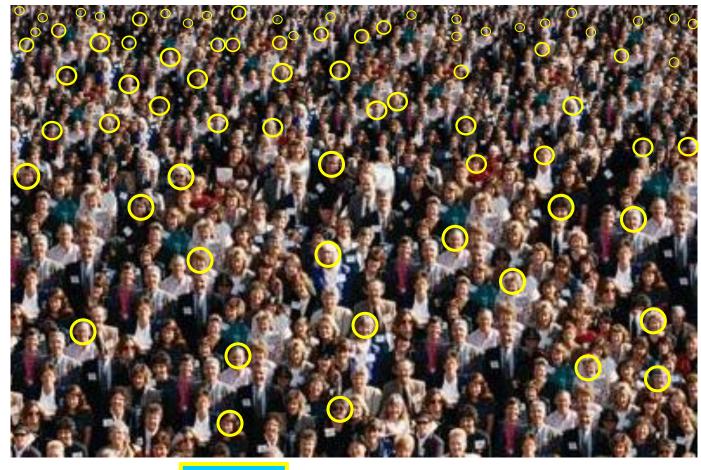
3120 asymptomatic CS patients randomised to CEA vs. deferred CEA


Result: successful CEA reduces 10-year stroke risk.


Stroke reduction with revascularization in asymptomatic carotid stenosis

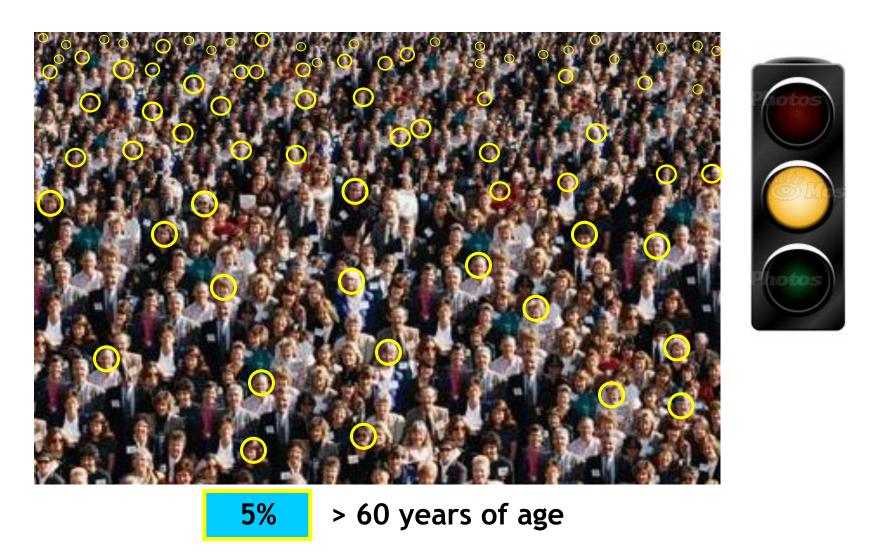
Stroke reduction with revascularization in asymptomatic carotid stenosis


Stroke reduction with revascularization in asymptomatic carotid stenosis


NB. Effect of revascularization maintained at 15 years, and also in patients on triple medical therapy

ESC Congress Paris 2019

> 60 years of age



5%

> 60 years of age

---> ... in 10 years (2029)

ESC Congress Paris 2019

in 10 years (2029)

in 10 years (2029)

Stroke: "Systematic Review and Analysis"...

Abbott

Medical Intervention Alone for Asymptomatic Carotids

e575

Table 1. Average Annual Stroke +/-TIA Rates of Patients With Asymptomatic Severe (>50%) Carotid Stenosis Managed With Medical Intervention Alone (%)*

Study	Sample Size	Ipsilateral Stroke		Ipsilateral Stroke/TIA		Any Territory Stroke		Any Territory Stroke/TIA	
		Raw Data	KM Estimates	Raw Data	KM Estimates	Raw Data	KM Estimates	Raw Data	KM Estimates
Johnson, 1985 ⁷⁶	121	3.3		19.0					
Toronto, 1986 ²	113	0		7.9 (all TIA)		1.9		10.7	11.0
VACS, 199310	233	2.4		5.2		3.0		6.1	
ACAS, 1995 ¹¹	834	2.3	2.2	4.5	3.8	3.8	3.5		
ECST, 1995 ⁷⁷	127	2.3	1.9						
ACBS, 1997 ⁷⁸	357	1.2	1.4	3.4	4.2	2.1	2.5	5.8	
CHS, 199882	185	1.3	1.0			2.6	2.3		
NASCET, 2000 ³	216		3.2						
ACSRS, 200579	1115	1.3	1.7	3.1	3.4		2.1		4.1
ASED, 200580	202	1.2	1.0	3.2	3.1	2.4	2.2	5.6	5.1
SMART, 200781	221	0.6				0.7			

^{*}ACAS indicates Asymptomatic Carotid Atherosclerosis Study; ECST, European Carotid Surgery Trial; ACBS, Asymptomatic Cervical Bruit Study; NASCET, North American Symptomatic Carotid Endarterectomy Trial; ACSRS, Asymptomatic Carotid Stenosis and Risk of Stroke Study; ASED, Asymptomatic Stenosis Embolus Detection Study; SMART, Second Manifestations of ARTerial disease Study.

ESC Congress Paris 2019

Stroke: "Systematic Review and Analysis"...

Abbott

Medical Intervention Alone for Asymptomatic Carotids

e575

Table 1. Average Annual Stroke +/-TIA Rates of Patients With Asymptomatic Severe (>50%) Carotid Stenosis Managed With Medical Intervention Alone (%)*

Study	Sample Size	Ipsilateral Stroke		Ipsilateral Stroke/TIA		Any Territory Stroke		/ Territary Stroke/TIA	
		Raw Data	KM Estimates	Raw Data	KM Estimates	Raw Data	KM Estinates	Ray Cata	KM Estimates
Johnson, 1985 ⁷⁶	121	3.3		19.0			740		
Toronto, 1986 ²	113	0		7.9 (all TIA)		9		10.7	11.0
VACS, 199310	233	2.4		5.2		.0		6.1	
ACAS, 1995 ¹¹	834	2.3	2.2	4.5	3	3.8	3.5		
ECST, 1995 ⁷⁷	127	2.3	1.9						
ACBS, 1997 ⁷⁸	357	1.2	1.4	24	4.2	2.1	2.5	5.8	
CHS, 199882	185	1.3	1.0	. خا		2.6	2.3		
NASCET, 2000 ³	216		a exe						
ACSRS, 200579	1115	1.3		3.1	3.4		2.1		4.1
ASED, 200580	202	W	1.0	3.2	3.1	2.4	2.2	5.6	5.1
SMART, 200781	221	0.6				0.7			

^{*}ACAS indicates Asymptomatic Carotid Atherosclerosis Study; ECST, European Carotid Surgery Trial; ACBS, Asymptomatic Cervical Bruit Study; NASCET, North American Symptomatic Carotid Endarterectomy Trial; ACSRS, Asymptomatic Carotid Stenosis and Risk of Stroke Study; ASED, Asymptomatic Stenosis Embolus Detection Study; SMART, Second Manifestations of ARTerial disease Study.

ESC Congress Paris 2019

Stroke: "Systematic Review and Analysis"...

Abbott

Medical Intervention Alone for Asymptomatic Carotids

e575

Table 1. Average Annual Stroke +/-TIA Rates of Patients With Asymptomatic Severe (>50%) Carotid Stenosis Managed With Medical Intervention Alone (%)*

Study		Ipsilateral Stroke		Ipsilateral Stroke/TIA		Any Territory Stroke		I rm ry Stroke/TIA	
	Sample Size	Raw Data	KM Estimates	Raw Data	KM Estimates	Raw Data	KM Estimates	Ray Sata	KM Estimates
Johnson, 1985 ⁷⁶	121	3.3		19.0					
Toronto, 1986 ²	113	0		7.9 (all TIA)		9	1	10.7	11.0
VACS, 199310	233	2.4		5.2		.0		6.1	
ACAS, 1995 ¹¹	834	2.3	2.2	4.5	3	3.8	3.5		
ECST, 199577	127	2.3	1.9						
ACBS, 1997 ⁷⁸	357	1.2	1.4	2.4	4.2	2.1	2.5	5.8	
CHS, 199882	185	1.3	1.0	ِ خِل		2.6	2.3		
NASCET, 2000 ³	216		2 Cire						
ACSRS, 200579	1115	1.3		3.1	3.4		2.1		4.1
ASED, 200580	202	W	1.0	3.2	3.1	2.4	2.2	5.6	5.1
SMART, 200781	221	0.6				0.7			

^{*}ACAS indicates Asymptomatic Carotid Atherosclerosis Study; ECST, European Carotid Surgery Trial; ACBS, Asymptomatic Cervical Bruit Study; NASCET, North American Symptomatic Carotid Endarterectomy Trial; ACSRS, Asymptomatic Carotid Stenosis and Risk of Stroke Study; ASED, Asymptomatic Stenosis Embolus Detection Study; SMART, Second Manifestations of ARTerial disease Study.

Even if a "good" journal – READ critically!

Assumptions

are not powered to dismiss

Large-scale level 1 evidence

(ACST, >3100 pts)

Determining "Symptomatic" CS...

Symptoms vs. Signs

Determining "Symptomatic" CS...

Symptoms vs. Signs stroke cerebral infarct

How asymptomatic is "asymptomatic" carotid stenosis?

Resolving fundamental confusion(s)—and confusions yet to be resolved

Piotr Musiałek¹, Iris Q. Grunwald^{2,3}

- 1 Department of Cardiac and Vascular Diseases, Jagiellonian University Medical College, John Paul II Hospital, Kraków, Poland
- Neuroscience and Vascular Simulation, Anglia Ruskin University, Chelmsford, United Kingdom
- 3 Southend University Hospital NHS Foundation Trust, Westcliff-on-Sea, United Kingdom

Atherosclerotic stenosis of the internal carotid artery of 50% or more is a relatively common pathology (about 2% to 8% of the general population aged 60 to 80 years), with the prevalence similar to that of nonvalvular atrial fibrillation.¹ However, patients with manifest atherosclerosis in other vascular beds show a significantly greater prevalence of carotid stenosis (CS) and a greater risk of cerebral symptoms that occur through the thromboembolic or hemodynamic mechanisms.²

The ACST-1 trial³ in 3120 patients with asymptomatic CS followed for 10 years demonstrated, with an elective (rather than deferred) CS revascularization, a profound absolute risk reduction in nonperioperative stroke by 5.9% at 5 years (risk reduction from 11.0% to 5.1%) and 6.1% at 10 years (risk reduction from 16.9% to 10.8%, with the magnitude of the effect maintained in patients on lipid--lowering therapy).3 Surprisingly, in the absence of any new randomized data, there have been vocal calls recently to disregard the level-1 evidence from the ACST-1 trial through either ignoring the trial completely in some meta-analyses4 or attempting to construct an alternative body of "new evidence." Such "new-evidence" observational studies, performed not infrequently in as few as 100 subjects⁵ (rather than the usually referenced 1153 subjects)5 followed for a relatively short time5 (and with most transient ischemic attacks [TIAs] leading-rightly-to carotid revascularization to prewith asymptomatic CS on optimized medical therapy (OMT). As the risk is cumulative, the annual risk level of about 2.5% to 3.0% indicates—for instance for a 50-year-old man with an asymptomatic CS on contemporary OMT-a statistical stroke risk of about 25% to 30% by the age of 60 and 50% to 60% by the age of 70 (the actual risk can be still higher when additional risk factors, such as diabetes, are present).2 As 85% of strokes occur without a warning sign, and of those who survive stroke (about 40% at 5 years) about half are disabled,2 many families and physicians find it difficult to ignore such a risk.4 This is particularly relevant because contemporary CS revascularization studies continue to enroll patients with CS strokes despite OMT; this provdes circumstantial evidence that OMT, at least in some patients, does not sufficiently protect against stroke.4

So why is the management of asymptomatic CS (to some at least) controversial today? Principal reasons seem to stem from: 1) definition problems ("asymptomatic" vs "symptomatic" CS; "stroke" vs "cerebral infarct"); 2) fundamental differences between the low-risk general population and higher-risk populations with atherosclerotic disease manifestations; 3) poor appreciation of increased stroke risk characteristics in CS; 4) risk of intervention (until recently) of about 3%; and 5) lack of randomized data (OMT vs OMT + intervention) in current populations with asymptomatic CS across the whole risk spectrum.

Q4 The CREST Randomized Controlled Trial, (conducted in 2502 pts, 53% symptomatic) showed, in primary endpoint and long-term follow-up, EQUIVALENCE of CEA and first-generation CAS:

Please vote

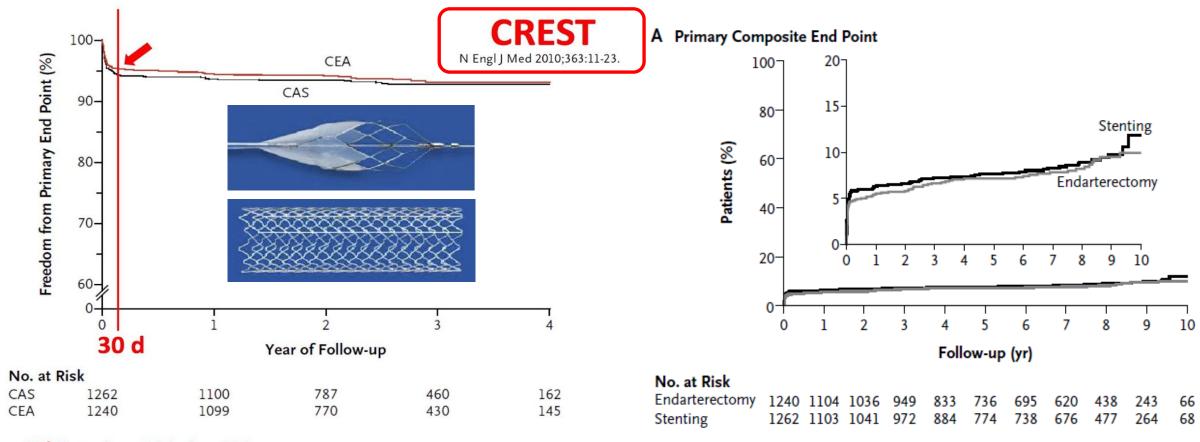
Q4 The CREST Randomized Controlled Trial, (conducted in 2502 pts, 53% symptomatic) showed, in primary endpoint and long-term follow-up, EQUIVALENCE of CEA and first-generation CAS:

A. Yes

B. No

C. Don't know

			Periprocedural Period	N Engl J Med 2010;363:11-23.	
CREST	CAS (N=1262)	CEA (N=1240)	Absolute Treatment Effect of CAS vs. CEA (95% CI)	Hazard Ratio for CAS vs. CEA (95% CI)	P Value
	no. of patie	nts (% ±SE)	percentage points		
Death	9 (0.7±0.2)	4 (0.3±0.2)	0.4 (-0.2 to 1.0)	2.25 (0.69 to 7.30)†	0.18†
Stroke					
Any	52 (4.1±0.6)	29 (2.3±0.4)	1.8 (0.4 to 3.2)	1.79 (1.14 to 2.82)	0.01
Major ipsilateral	11 (0.9±0.3)	4 (0.3±0.2)	0.5 (-0.1 to 1.2)	2.67 (0.85 to 8.40)	0.09
Major nonipsilateral‡	0	4 (0.3±0.2)	NA	NA	NA
Minor ipsilateral	37 (2.9±0.5)	17 (1.4±0.3)	1.6 (0.4 to 2.7)	2.16 (1.22 to 3.83)	0.009
Minor nonipsilateral	4 (0.3±0.2)	4 (0.3±0.2)	0.0 (-0.4 to 0.4)	1.02 (0.25 to 4.07)	0.98†
Myocardial infarction	14 (1.1±0.3)	28 (2.3±0.4)	-1.1 (-2.2 to -0.1)	0.50 (0.26 to 0.94)	0.03
Any periprocedural stroke or postprocedural ipsilateral stroke	52 (4.1±0.6)	29 (2.3±0.4)	1.8 (0.4 to 3.2)	1.79 (1.14 to 2.82)	0.01
Major stroke	11 (0.9±0.3)	8 (0.6±0.2)	0.2 (-0.5 to 0.9)	1.35 (0.54 to 3.36)	0.52
Minor stroke	41 (3.2±0.5)	21 (1.7±0.4)	1.6 (0.3 to 2.8)	1.95 (1.15 to 3.30)	0.01
Any periprocedural stroke or death or post- procedural ipsilateral stroke	55 (4.4±0.6)	29 (2.3±0.4)	2.0 (0.6 to 3.4)	1.90 (1.21 to 2.98)	0.005
Primary end point (any periprocedural stroke, myocardial infarction, or death or postprocedural ipsilateral stroke)	66 (5.2±0.6)	56 (4.5±0.6)	0.7 (-1.0 to 2.4)	1.18 (0.82 to 1.68)	0.38

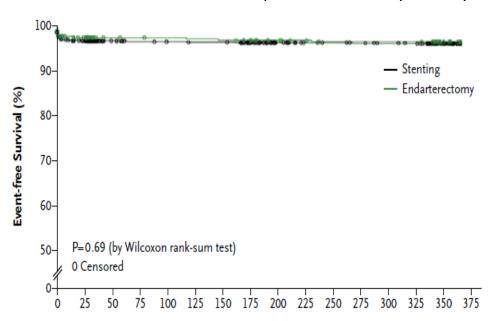


			Periprocedural Period	N Engl J Med 2	010;363:11-2
CREST	CAS (N=1262)	CEA (N=1240)	Absolute Treatment Effect of CAS vs. CEA (95% CI)	Hazard Ratio for CAS vs. CEA (95% CI)	P Value
	no. of patie	nts (% ±SE)	percentage points		
Death	9 (0.7±0.2)	4 (0.3±0.2)	0.4 (-0.2 to 1.0)	2.25 (0.69 to 7.30)†	0.18†
Stroke					
Any	52 (4.1±0.6)	29 (2.3±0.4)	1.8 (0.4 to 3.2)	1.79 (1.14 to 2.82)	0.01
Major ipsilateral	11 (0.9±0.3)	4 (0.3±0.2)	0.5 (-0.1 to 1.2)	2.67 (0.85 to 8.40)	0.09
Major nonipsilateral‡	0	4 (0.3±0.2)	NA	NA	NA
Minor ipsilateral	37 (2.9±0.5)	17 (1.4±0.3)	1.6 (0.4 to 2.7)	2.16 (1.22 to 3.83)	0.009
Minor nonipsilateral	4 (0.3±0.2)	4 (0.3±0.2)	0.0 (-0.4 to 0.4)	1.02 (0.25 to 4.07)	0.98†
Myocardial infarction	14 (1.1±0.3)	28 (2.3±0.4)	-1.1 (-2.2 to -0.1)	0.50 (0.26 to 0.94)	0.03
Any periprocedural stroke or postprocedural ipsilateral stroke	52 (4.1±0.6)	25 (2.3±0.4)	1.8 (0.4 to 3.2)	1.79 (1.14 to 2.82)	0.01
Major stroke	11 (0.9±0.3)	8 (0.6±0.2)	0.2 (-0.5 to 0.9)	1.35 (0.54 to 3.36)	0.52
Minor stroke	41 (3.2±0.5)	21 (1.7±0.4)	1.6 (0.3 to 2.8)	1.95 (1.15 to 3.30)	0.01
Any periprocedural stroke or death or post- procedural ipsilateral stroke	55 (4.4±0.6)	29 (2.3±0.4)	2.0 (0.6 to 3.4)	1.90 (1.21 to 2.98)	0.005
Primary end point (any periprocedural stroke, myocardial infarction, or death or postprocedural ipsilateral stroke)	66 (5.2±0.6)	56 (4.5±0.6)	0.7 (-1.0 to 2.4)	1.18 (0.82 to 1.68)	0.38

			Periprocedural Period	N Engl J Med 2	010;363:11-23.
CREST	CAS (N=1262)	CEA (N=1240)	Absolute Treatment Effect of CAS vs. CEA (95% CI)	Hazard Ratio for CAS vs. CEA (95% CI)	P Value
	no. of patie	nts (% ±SE)	percentage points		
Death	9 (0.7±0.2)	4 (0.3±0.2)	0.4 (-0.2 to 1.0)	2.25 (0.69 to 7.30)†	0.18†
Stroke					
Any	52 (4.1±0.6)	29 (2.3±0.4)	1.8 (0.4 to 3.2)	1.79 (1.14 to 2.82)	0.01
Major ipsilateral	11 (0.9±0.3)	4 (0.3±0.2)	0.5 (-0.1 to 1.2)	2.67 (0.85 to 8.40)	0.09
Major nonipsilateral‡	0	4 (0.3±0.2)	NA	NA	NA
Minor ipsilateral	37 (2.9±0.5)	17 (1.4±0.3)	1.6 (0.4 to 2.7)	2.16 (1.22 to 3.83)	0.009
Minor nonipsilateral	4 (0.3±0.2)	4 (0.3±0.2)	0.0 (-0.4 to 0.4)	1.02 (0.25 to 4.07)	0.98†
Myocardial infarction	14 (1.1±0.3)	28 (2.3±0.4)	-1.1 (-2.2 to -0.1)	0.50 (0.26 to 0.94)	0.03
Any periprocedural stroke or postprocedural ipsilateral stroke	52 (4.1±0.6)	28 (2.3±0.4)	1.8 (0.4 to 3.2)	1.79 (1.14 to 2.82)	0.01
Major stroke	11 (0.9±0.3)	8 (0.6±0.2)	0.2 (-0.5 to 0.9)	1.35 (0.54 to 3.36)	0.52
Minor stroke	41 (3.2±0.5)	21 (1.7±0.4)	1.6 (0.3 to 2.8)	1.95 (1.15 to 3.30)	0.01
Any periprocedural stroke or death or post- procedural ipsilateral stroke	55 (4.4±0.6)	29 (2.3±0.4)	2.0 (0.6 to 3.4)	1.90 (1.21 to 2.98)	0.005
Primary end point (any periprocedural stroke, myocardial infarction, or death or postprocedural ipsilateral stroke)	66 (5.2±0.6)	56 (4.5±0.6)	0.7 (-1.0 to 2.4)	1.18 (0.82 to 1.68)	0.38
					

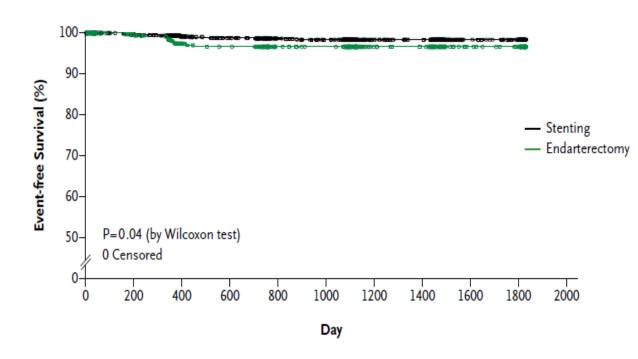
ESC Congress Paris 2019

The first 30 days make the difference: CEA vs conventional-stent CAS



19/48 strokes ≤30d after CAS were POST-procedural

Brott et al, NEJM 2016


ACT-1 RCT: Neuroprotected CAS (first-generation stent) vs . CEA in 1453 average surgical risk patients

Primary endpoint: Freedom from death, stroke, MI by 30 days and from ipsilateral stroke by 365 days

Neuroprotected CAS (first-generation stent)
NON-INFERIOR to CEA

Freedom from clinically-driven target lesion revascularization by 5 years

Rosenfield et al, NEJM 2016

ESC Congress Paris 2019

Carotid Artery Stenting Versus Endarterectomy for Stroke Prevention

A Meta-Analysis of Clinical Trials

Partha Sardar, MD,^a Saurav Chatterjee, MD,^b Herbert D. Aronow, MD,^c Amartya Kundu, MD,^d Preethi Ramchand, MD,^e Debabrata Mukherjee, MD,^f Ramez Nairooz, MD,^g William A. Gray, MD,^h Christopher J. White, MD,ⁱ Michael R. Jaff, DO,^j Kenneth Rosenfield, MD,^j Jay Giri, MD^{k,l}

RESULTS We analyzed 6,526 patients from 5 trials with a mean follow-up of 5.3 years. The composite outcome of periprocedural death, stroke, myocardial infarction (MI), or nonperiprocedural ipsilateral stroke was not significantly different between therapies (OR: 1.22; 95% CI: 0.94 to 1.59). The risk of any periprocedural stroke plus nonperiprocedural ipsilateral stroke was higher with CAS (OR: 1.50; 95% CI: 1.22 to 1.84). The risk of higher stroke with CAS was mostly attributed to periprocedural minor stroke (OR: 2.43; 95% CI: 1.71 to 3.46). CAS was associated with significantly lower risk of periprocedural MI (OR: 0.45; 95% CI: 0.27 to 0.75); cranial nerve palsy (OR: 0.07; 95% CI: 0.04 to 0.14); and the composite outcome of death, stroke, MI, or cranial nerve palsy during the periprocedural period (OR: 0.75; 95% CI: 0.60 to 0.93).

Carotid Artery Stenting Versus Endarterectomy for Stroke Prevention

A Meta-Analysis of Clinical Trials

Partha Sardar, MD,^a Saurav Chatterjee, MD,^b Herbert D. Aronow, MD,^c Amartya Kundu, MD,^d Preethi Ramchand, MD,^e Debabrata Mukherjee, MD,^f Ramez Nairooz, MD,^g William A. Gray, MD,^h Christopher J. White, MD,ⁱ Michael R. Jaff, DO,^j Kenneth Rosenfield, MD,^j Jay Giri, MD^{k,l}

RESULTS We analyzed 6,526 patients from 5 trials with a mean follow-up of 5.3 years. The composite outcome of periprocedural death, stroke, myocardial infarction (MI), or nonperiprocedural ipsilateral stroke was not significantly different between therapies (OR: 1.22; 95% CI: 0.94 to 1.59). The risk of any periprocedural stroke plus nonperiprocedural ipsilateral stroke was higher with CAS (OR: 1.50; 95% CI: 1.22 to 1.84). The risk of higher stroke with CAS was mostly attributed to periprocedural minor stroke (OR: 2.43; 95% CI: 1.71 to 3.46). CAS was associated with significantly lower risk of periprocedural MI (OR: 0.45; 95% CI: 0.27 to 0.75); cranial nerve palsy (OR: 0.07; 95% CI: 0.04 to 0.14); and the composite outcome of death, stroke, MI, or cranial nerve palsy during the periprocedural period (OR: 0.75; 95% CI: 0.60 to 0.93).

Table 4 Features associated with increased risk of stroke in patients with asymptomatic carotid stenosis treated medically (for details see Web Table 5

Clinicala	Contralateral TIA/stroke ¹²¹	
Cerebral imaging	Ipsilateral silent infarction ¹²²	
Ultrasound imaging	 Stenosis progression (> 20%)¹²³ Spontaneous embolization on transcranial Doppler (HITS)¹²⁴ Impaired cerebral vascular reserve¹²⁵ Large plaques^{b126} Echolucent plaques⁹⁶ Increased juxta-luminal black (hypoechogenic) area¹²⁷ 	7
MRA	Intraplaque haemorrhage ¹²⁸ Lipid-rich necrotic core	@FSC 201

HITS = high intensity transient signal; MRA = magnetic resonance angiography; TIA = transient ischaemic attack.

- thrombus-containing
- documented progressive
- irregular and/or ulcerated
- contralateral ICA occlusion/stroke
- asymptomatic ipsilateral brain infarct

AbuRahma A et al. *Ann Surg.* 2003;238:551-562. Ballotta E et al. *J Vasc Surg* 2007;45:516-522. Kakkos SK et al. (ACSRS) *J Vasc Surg.* 2009;49:902-909. Lovett JK et al. *Circulation* 2004;110:2190-97 Nicolaides AN et al. *J Vasc Surg* 2010;52:1486-96. Taussky P et al. *Neurosurg Focus* 2011;31:6-17.

^aAge is not a predictor of poorer outcome.

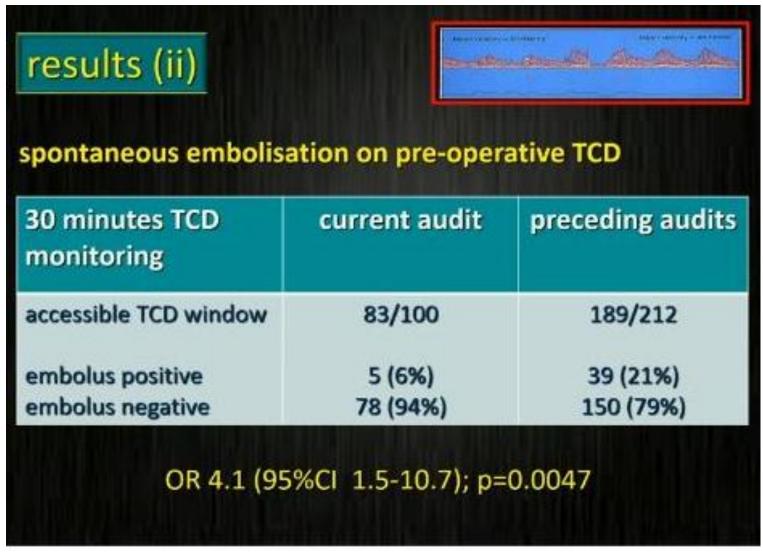
^bMore than 40 mm² on digital analysis.

Table 4 Features associated with increased risk of stroke in patients with asymptomatic carotid stenosis treated medically (for details see Web Table 5

Clinicala	Contralateral TIA/stroke ¹²¹	
Cerebral imaging	Ipsilateral silent infarction ¹²²	
Ultrasound imaging	 Stenosis progression (> 20%)¹²³ Spontaneous embolization on transcranial Doppler (HITS)¹²⁴ Impaired cerebral vascular reserve¹²⁵ Large plaques^{b126} Echolucent plaques⁹⁶ Increased juxta-luminal black (hypoechogenic) area¹²⁷ 	7
MRA	Intraplaque haemorrhage ¹²⁸ Lipid-rich necrotic core	.IUC J318

HITS = high intensity transient signal; MRA = magnetic resonance angiography; TIA = transient ischaemic attack.

Point to remember #6


- thrombus-containing
- documented progressive
- irregular and/or ulcerated
- contralateral ICA occlusion/stroke
- asymptomatic ipsilateral brain infarct

AbuRahma A et al. *Ann Surg*. 2003;238:551-562. Ballotta E et al. *J Vasc Surg* 2007;45:516-522. Kakkos SK et al. (ACSRS) *J Vasc Surg*. 2009;49:902-909. Lovett JK et al. *Circulation* 2004;110:2190-97 Nicolaides AN et al. *J Vasc Surg* 2010;52:1486-96. Taussky P et al. *Neurosurg Focus* 2011;31:6-17.

^aAge is not a predictor of poorer outcome.

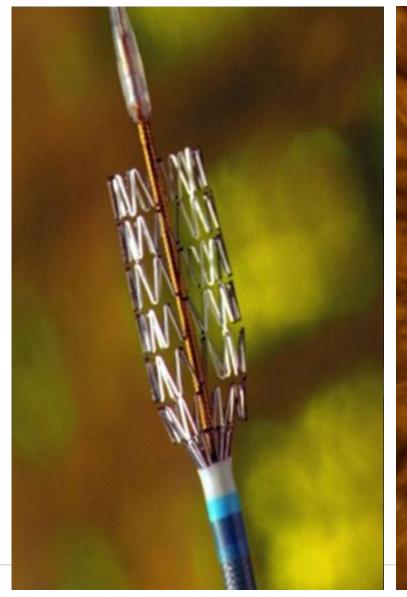
^bMore than 40 mm² on digital analysis.

Spontaneous embolization (TCD) in Symptomatic patients admitted for CEA

plus...

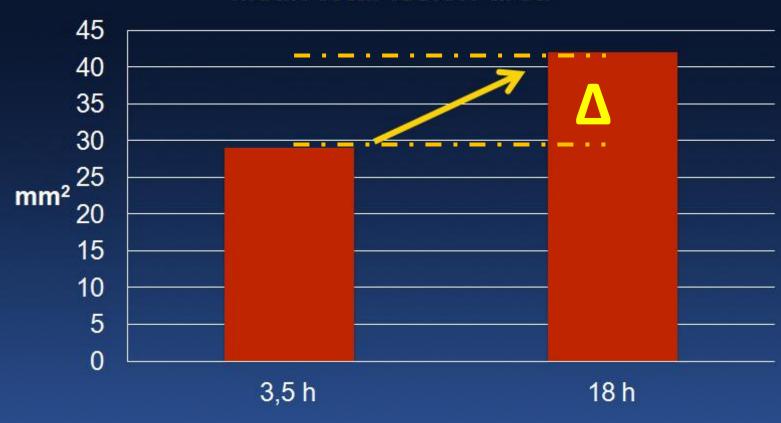
- cumbersome
- poorly standardized
- poorly reproducible

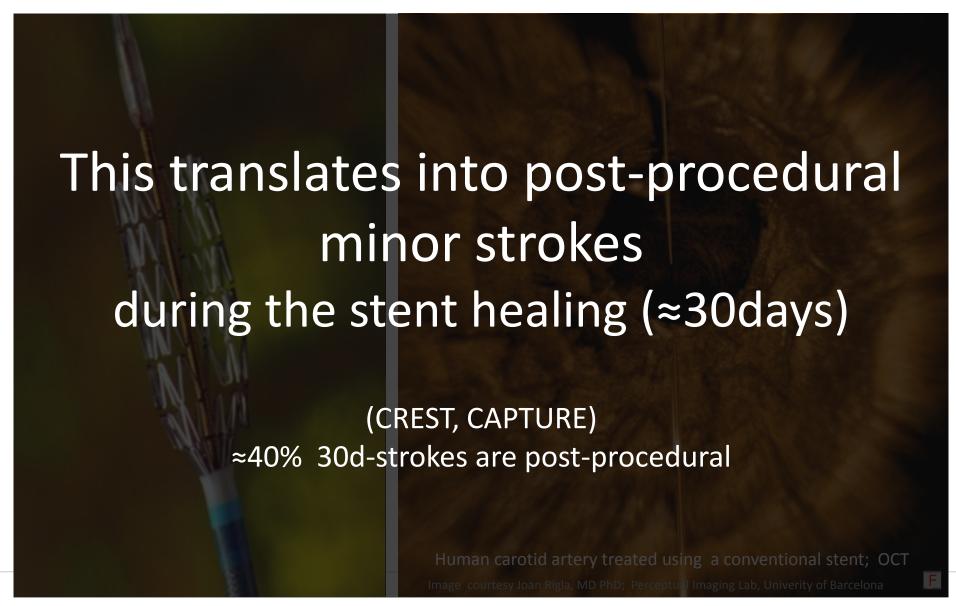
any practical value today in riskstratification of Asymptomatic CS


R Naylor, Charing Cross 2016

ESC Congress Paris 2019

Conventional Carotid Stents

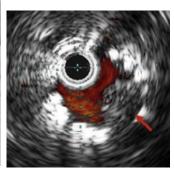

Conventional Carotid Stents **Do Have A Problem**

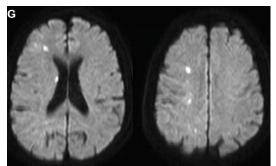


Post-procedural Embolization with conventional carotid stents DW-MRI post CAS

Mean total lesion area

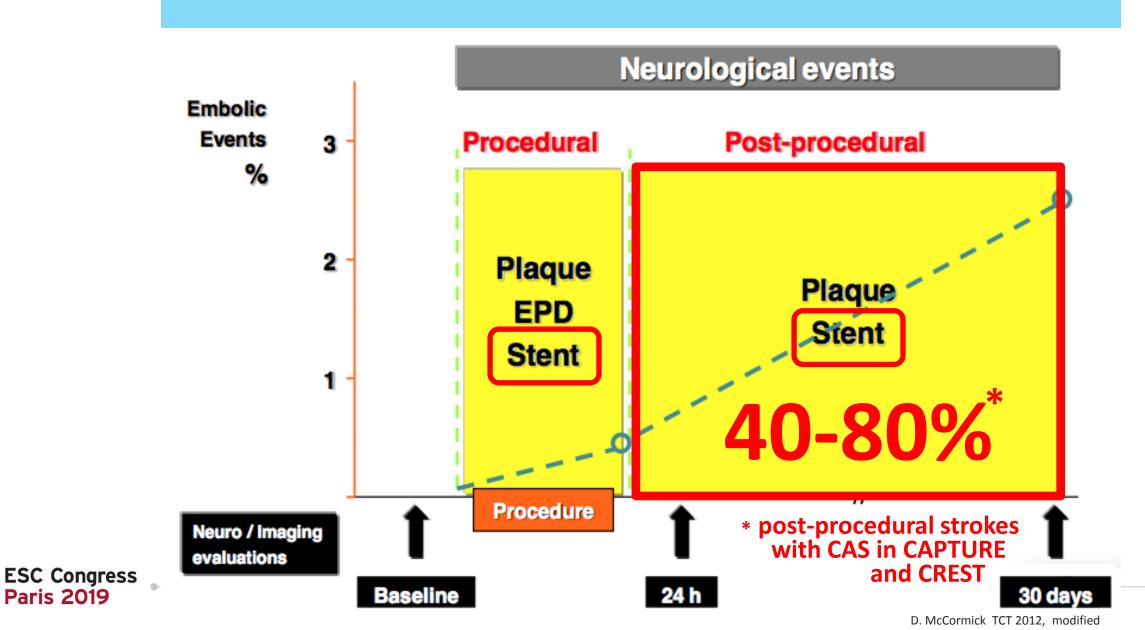
Conventional Carotid Stents Do Have A Problem


PERIPHERAL


Carotid Artery Stenting

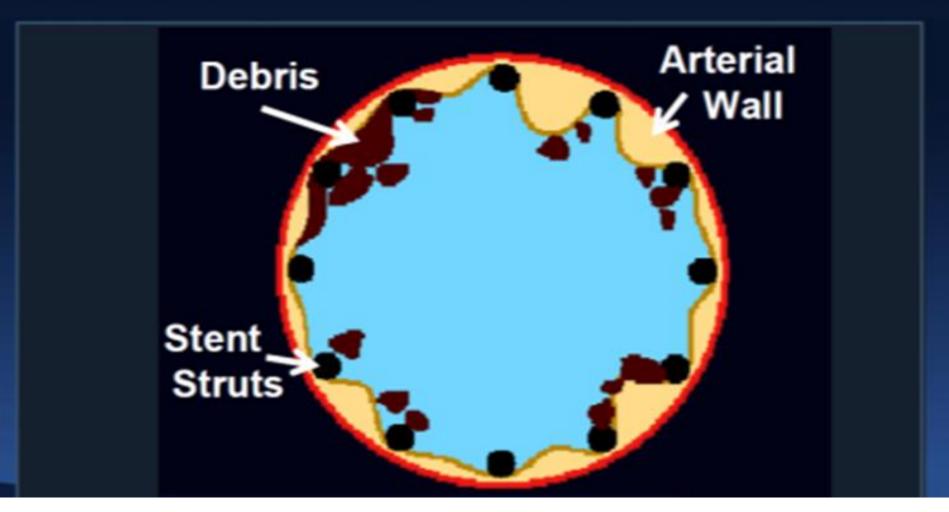
Investigation of Plaque Protrusion Incidence and Prognosis

Masashi Kotsugi, MD,^a Katsutoshi Takayama, MD,^b Kaoru Myouchin, MD,^b Takeshi Wada, MD,^c Ichiro Nakagawa, MD,^d Hiroyuki Nakagawa, MD,^c Toshiaki Taoka, MD,^c Shinichiro Kurokawa, MD,^a Hiroyuki Nakase, MD,^d Kimihiko Kichikawa, MD^c



RESULTS PP was observed in 9 cases (2.6%). Ischemic stroke occurred in 6 of 9 PP cases (66.7%; 1 major, 5 minor). Ischemic lesions were observed on diffusion-weighted imaging in 8 of 9 cases (88.9%). PP was strongly associated with perioperative ischemic stroke. A significant increase in PP susceptibility was observed with open-cell stent use and unstable plaque.

CONCLUSIONS The incidence of PP in CAS was 2.6%, with a high risk of ischemic complications if PP was observed. The present findings indicate the necessity of appropriate device selection to avoid PP.


Timing of neuro-embolic events after CAS

Paris 2019

Conventional Carotid Stent

Plaque protrusion may lead to early and late distal embolization

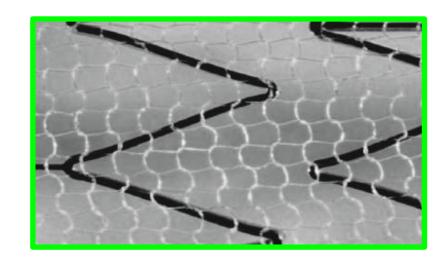
Conventional Carotid Stent

Plaque protrusion may lead to early and late distal embolization

FUNDAMENTAL

• CEA, by excluding the plaque, excludes the post-procedural problem of the plaque

FUNDAMENTAL


• CEA, by excluding the plaque, excludes the post-procedural problem of the plaque

•In CAS, the <u>stent needs to</u> exclude the plaque too

FUNDAMENTAL

• CEA, by excluding the plaque, excludes the post-procedural problem of the plaque

•In CAS, the <u>stent needs to</u> <u>exclude the plaque too</u>

• Periprocedural embolization may be protected with EPD (mesh stent, once implanted, may inhibit the plaque embolic potential)

 Post-procedural embolization may not be protected with EPD but it may be protected with improved stent design - Mesh Stents

ESC Congress Paris 2019

Stenting vs. Surgery

Collaborators are free to use their usual techniques

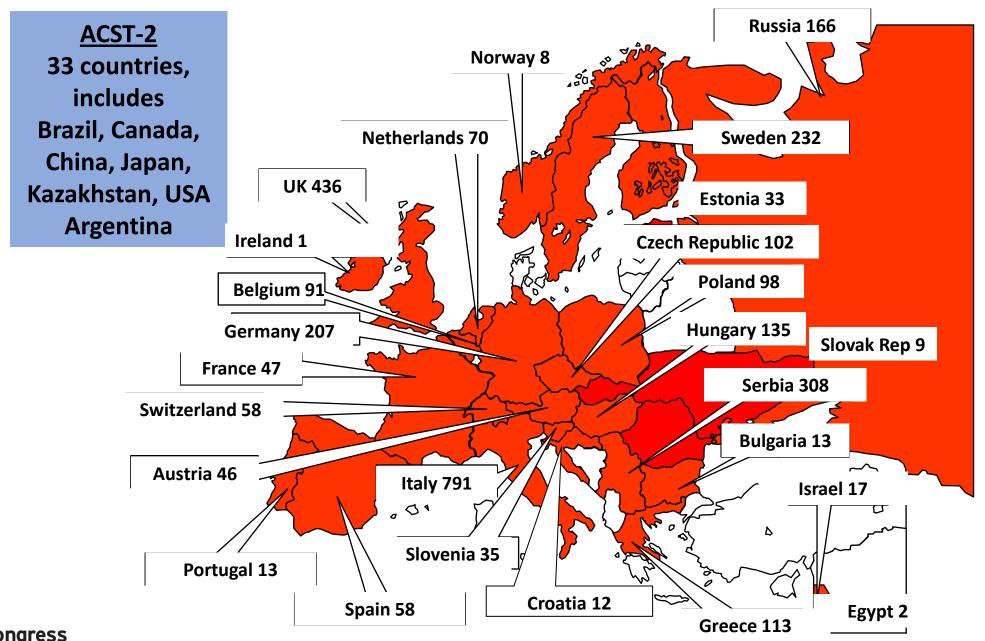
Any CE marked stent. EPD not mandated

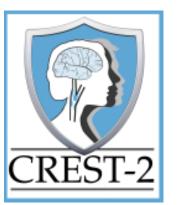
Collaborators are free to use their usual techniques

Any CE marked stent. EPD not mandated

ESC Congress GA or LA; Primary or patch closure...
Paris 2019

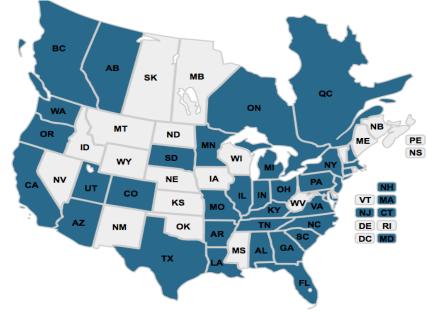
ACST-2 Recruitment target = 3600


Mean follow-up 2019


CEA: 4.0 person-years

CAS: 4.0 person-years

Overall peri-procedural Death/Major Stroke


≈1%

The Carotid Revascularization and Medical Management for Asymptomatic Carotid Stenosis Study

Health and Hope for Patients at Risk for Stroke

Enrollment >> half-way
(119 Centers;
1479 of 2480 Participants)

The success of CREST-2... (OMT + Intervention in asympt. CS vs OMT only)

will critically depend on

1. Effective recruitment (inclusion) of HIGH-risk asympt. CS pts

2. Safe intervention (CEA arm, CAS arm)

HIGH-risk asympt. CS pts naturally gravitate towards Intervention

(RCT patient selection bias)

SPACE-2: A Missed Opportunity to Compare Carotid Endarterectomy, Carotid Stenting, and Best Medical Treatment in Patients with Asymptomatic Carotid Stenoses

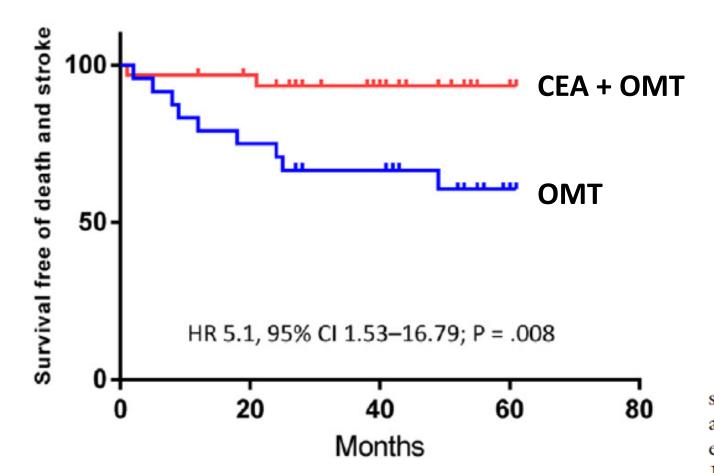
H.-H. Eckstein ^a, T. Reiff ^b, P. Ringleb ^b, O. Jansen ^c, U. Mansmann ^d, W. Hacke ^{b,*}, on behalf of the SPACE 2 Investigators

WHAT THIS PAPER ADDS

Despite being considered to be a very important study, the SPACE-2 randomized trial had to be abandoned after recruiting only 513 patients. Reasons for the poor recruitment rates were multifactorial and included patient unwillingness to accept medical therapy alone (having originally been referred for an intervention), the availability of reimbursement for CEA and CAS outwith the trial despite a lack of high-quality evidence justifying any intervention, and financial 'penalties' to hospitals/clinicians because patients randomized to BMT did not attract additional reimbursement. There are important lessons to be learned for future RCTs.

ESC Congress Paris 2019

^a Department of Vascular and Endovascular Surgery, Technical University of Munich, Munich, Germany


^b Department of Neurology, University of Heidelberg, Heidelberg, Germany

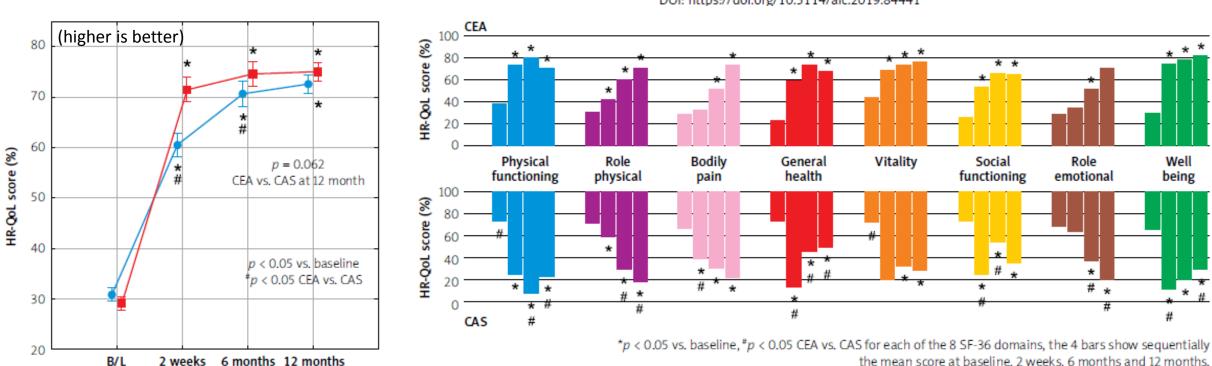
^c Department of Radiology and Neuroradiology, UKSH Campus Kiel, Kiel, Germany

d Institute of Medical Informatics, Biometry and Epidemiology, Ludwig Maximilian University Munich, Munich, Germany

AMTEC RCT in Asymptomatic CS:

Trial **STOPPED** by DSMB

Kolos et al. J Vasc Surg 2015


Given the lack of significant differences in baseline parameters between groups and a significant increase in the number of primary composite end point in the group of MMT (6.5% and 37.5%, P= .008), 10 of the 12 committee members decided to stop patient recruitment at the second meeting.

ESC Congress Paris 2019

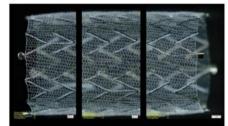
Impact of the Tx mode on the QoL

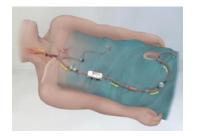
Health-related quality of life in ischaemic stroke survivors after carotid endarterectomy (CEA) and carotid artery stenting (CAS): confounder-controlled analysis

"The CEA-CAS difference was driven by less bodily pain and better physical functioning/role-physical plus better role-emotional and higher general well-being scores in CAS (p < 0.05)"

ESC Congress Paris 2019 CEA

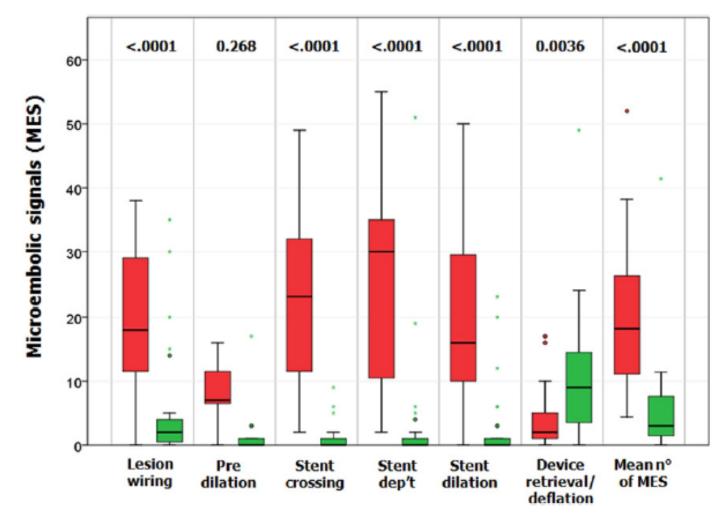
ECAS


Modern CAS therapy

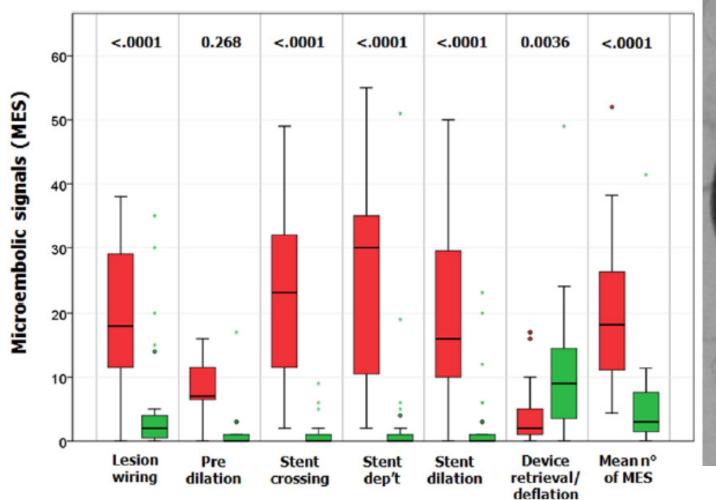

Statins and DAPT lower peri-procedural risk and ...

- Newer stent designs
- Flow reversal (MOMA)
- Direct cervical access (TCAR)
- Greater experience

Can reduce risk further



Microembolization During Carotid Artery Stenting


A Randomized Trial of Proximal Versus Distal Cerebral Protection

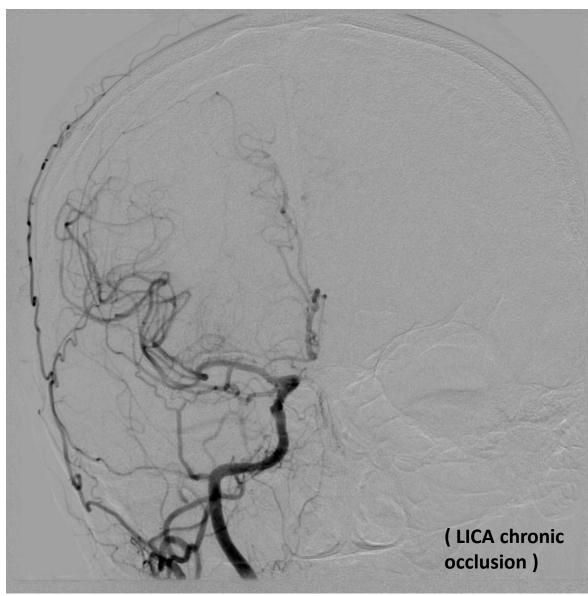
Montorsi P et al. JACC

Microembolization During Carotid Artery Stenting

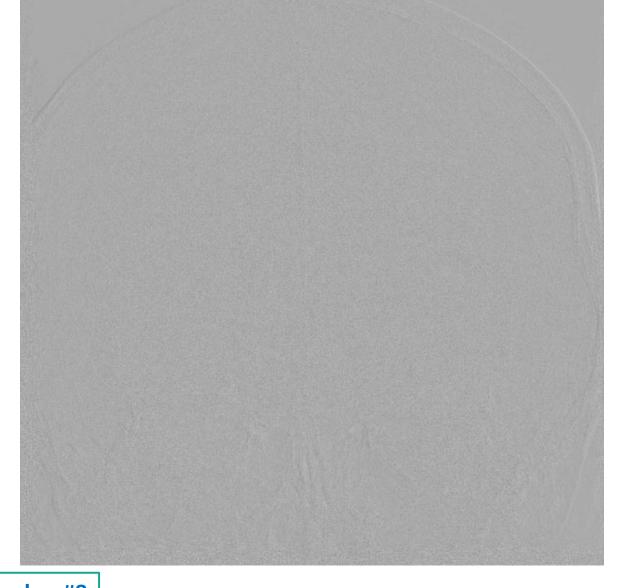
A Randomized Trial of Proximal Versus Distal Cerebral Protection


Montorsi P et al. JACC

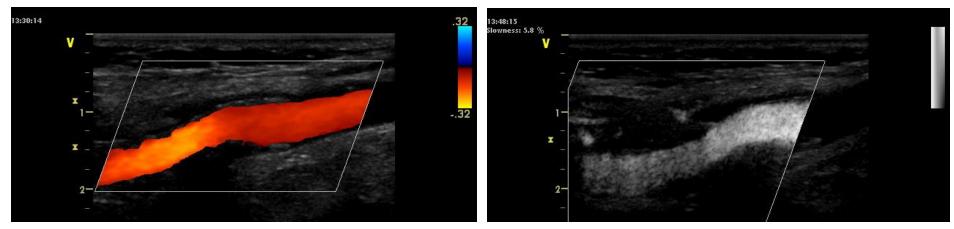
63-yo woman


recurrent TIAs

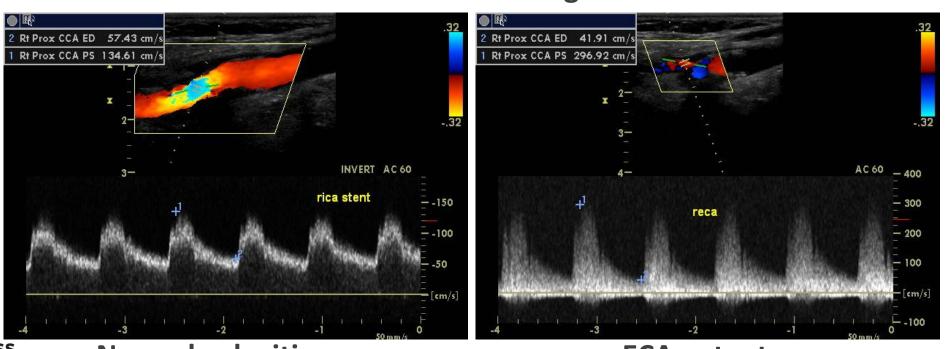
Stroke-in-evolution


ESC Congress Paris 2019

Evolving Stroke



Safe, effective, minimally-invasive therapeutic procedure



ESC Congress Paris 2019 Point to remember #8

Patient A/S, discharged home @ Day2 post procedure

Normal stent image

ESC Congress Paris 2019

Normal velocities

ECA patent

OCTOBER 2014:1177-83

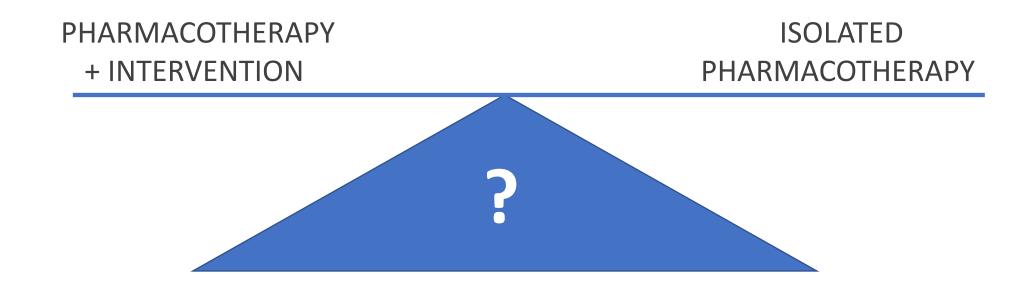

Study ID	ES	95% CI	N
Bijuklic K. et al. 2012	-1.05	-1.58 , -0.52	62
Cano N.M. et al. 2013	-0.54	-1.06 , -0.03	60
Castro-Afonso LH. et al. 2013	0.64	0.00, 1.28	40
El-Koussy M. et al. 2007	-0.61	-1.22 , -0.00	44
Flach Z.H. et al. 2007	0.37	-0.38 , 1.11	33
Leal I. et al. 2012	-0.60	-1.10 , -0.10	64
Montorsi P. et al. 2011	-0.52	-1.21 , 0.17	35
Taha M.M. et al. 2009	-1.25	-2.42 , -0.08	19
Overall (random-effects model)	-0.43	-0.84, -0.02	357

FIGURE 2 Incidence of New Ischemic Lesions/Patient at DW-MRI

Forrest plot representing the pooled estimate analysis for overall incidence of new ischemic lesions/patient detected at diffusion-weighted magnetic resonance imaging (DW-MRI). CI = confidence interval; ES = effect size.

Why the management of asymptomatic Carotid Stenosis continues to be so controversial?

A/S Carotid Stenosis Decision-making

Carotid Disease: 2019 Update

ESC Congress Paris 2019

A/S Carotid Stenosis Decision-making

PHARMACOTHERAPY + INTERVENTION

ISOLATED PHARMACOTHERAPY

RISK OF PROCEDURE

ESC Congress Paris 2019

Point to remember #9

A/S Carotid Stenosis Decision-making

PHARMACOTHERAPY + INTERVENTION

ISOLATED PHARMACOTHERAPY

RISK OF PROCEDURE

Effective Cerebral Protection, Effective Stent, Operator Skills

ESC Congress Paris 2019

Use of <u>Dual-Laye</u>red Stents in Endovascular Treatment of Extracranial Stenosis of the Internal Carotid Artery

Results of a Patient-Based Meta-Analysis of 4 Clinical Studies

Eugenio Stabile, MD, PhD,^a Gianmarco de Donato, MD, PhD,^b Piotr Musialek, MD, PhD,^c Koen De Loose, MD,^d Roberto Nerla, MD,^e Pasqualino Sirignano, MD,^f Salvatore Chianese, MD,^a Adam Mazurek, MD,^c Tullio Tesorio, MD,^g Marc Bosiers, MD,^d Carlo Setacci, MD,^b Francesco Speziale, MD,^f Antonio Micari, MD,^d Giovanni Esposito, MD, PhD^a

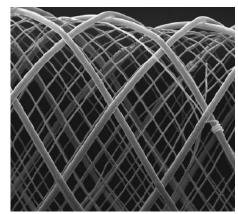
TABLE 2 Incidence of Adverse Clinical Events up to 30 Days of Follow-Up

	Peri-Procedural (in Hospital)	Discharge to 30 Days	Total 30 Days
Minor stroke	1.07 (6)	0.17 (1)	1.25 (7)
Major stroke	0 (0)	0 (0)	0 (0)
Death	0 (0)	0.17 (1)	0.17 (1)
Any stroke and death	% 1.07 (6)	0.36 (2)	% 1.44 (8)

Patient-level meta-analysis 4 clinical trials

556 patients

(both symptomatic and asymptomatic)


Use of <u>Dual-Layered Stents</u> in Endovascular Treatment of Extracranial Stenosis of the Internal Carotid Artery

Results of a Patient-Based Meta-Analysis of 4 Clinical Studies

Eugenio Stabile, MD, PhD,^a Gianmarco de Donato, MD, PhD,^b Piotr Musialek, MD, PhD,^c Koen De Loose, MD,^d Roberto Nerla, MD,^e Pasqualino Sirignano, MD,^f Salvatore Chianese, MD,^a Adam Mazurek, MD,^c Tullio Tesorio, MD,^g Marc Bosiers, MD,^d Carlo Setacci, MD,^b Francesco Speziale, MD,^f Antonio Micari, MD,^d Giovanni Esposito, MD, PhD^a

"This meta-analysis suggests that DLS can be safely used for CAS, and their use minimizes the incremental risk related to symptomatic status and other risk factors".

ESC Congress Paris 2019

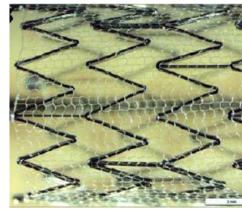


TABLE 3 Clinical and Procedural Characteristics Affecting the Occurrence of In-Hospital Stroke

	Incidence in Patients With the Characteristic	Incidence in Patients Without the Characteristic	Relative Risk	Odds Ratio (95% CI)	p Value
Octogenarians	0	1.3 (6)	0	0	0.63
Smoking	1.4 (5)	0.4 (1)	3.22	3.25 (0.37-27.79)	0.73
Hypertension	2.2 (5)	0.2 (1)	7.57	7.73 (0.10-7.65)	0.18
Diabetes	1.1 (2)	1.0 (4)	1.1	1.10 (0.20-6.07)	0.99
Dyslipidemia	1.2 (5)	0.7 (1)	1.71	1.72 (0.20-14.75)	0.96
Symptomatic status	1.0 (1)	1 (5)	0.95	0.95 (0.11-8.23)	0.99
Use of protection system	1.1 (6)	0			0.91
Use of proximal protection	0	1.6 (6)	0	0	0.52
Pre-dilatation	1.0 (2)	1.1 (4)	0.94	0.93 (0.17-5.15)	0.99
Roadsaver stent	0	1.9 (6)	0	0	0.17
Post-dilatation	0.9 (5)	2.9 (1)	0.32	0.31 (0.03-2.80)	0.75

Use of <u>Dual-Laye</u>red Stents in Endovascular Treatment of Extracranial Stenosis of the Internal Carotid Artery

Results of a Patient-Based Meta-Analysis of 4 Clinical Studies

Eugenio Stabile, MD, PhD,^a Gianmarco de Donato, MD, PhD,^b Piotr Musialek, MD, PhD,^c Koen De Loose, MD,^d Roberto Nerla, MD,^e Pasqualino Sirignano, MD,^f Salvatore Chianese, MD,^a Adam Mazurek, MD,^c Tullio Tesorio, MD,^g Marc Bosiers, MD,^d Carlo Setacci, MD,^b Francesco Speziale, MD,^f Antonio Micari, MD,^d Giovanni Esposito, MD, PhD^a

"This meta-analysis suggests that DLS can be safely used for CAS, and their use minimizes the incremental risk related to symptomatic status and other risk factors".

Use of protection

system

Use of proximal

Pre-dilatation

Roadsaver stent

Post-dilatation

protection

ESC Congress
Paris 2019

In-Hospital Stroke					
	Incidence in Patients With the Characteristic	Incidence in Patients Without the Characteristic		Odds Ratio (95% CI)	p Valı
Octogenarians	0	1.3 (6)	0	0	0.63
Smoking	1.4 (5)	0.4 (1)	3.22	3.25 (0.37-27.79)	0.73
Hypertension	2.2 (5)	0.2 (1)	7.57	7.73 (0.10-7.65)	0.18
Diabetes	1.1 (2)	1.0 (4)	1.1	1.10 (0.20-6.07)	0.99
Dyslipidemia	1.2 (5)	0.7 (1)	1.71	1.72 (0.20-14.75)	0.96
Symptomatic status	1.0 (1)	1 (5)	0.95	0.95 (0.11-8.23)	0.99

0

1.6 (6)

1.1 (4)

1.9 (6)

2.9 (1)

0.91

0.52

0.99

0.17

0

0.93 (0.17-5.15)

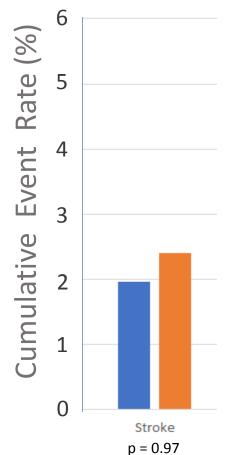
0.31 (0.03-2.80)

TABLE 3 Clinical and Procedural Characteristics Affecting the Occurrence of

1.1 (6)

0

1.0(2)

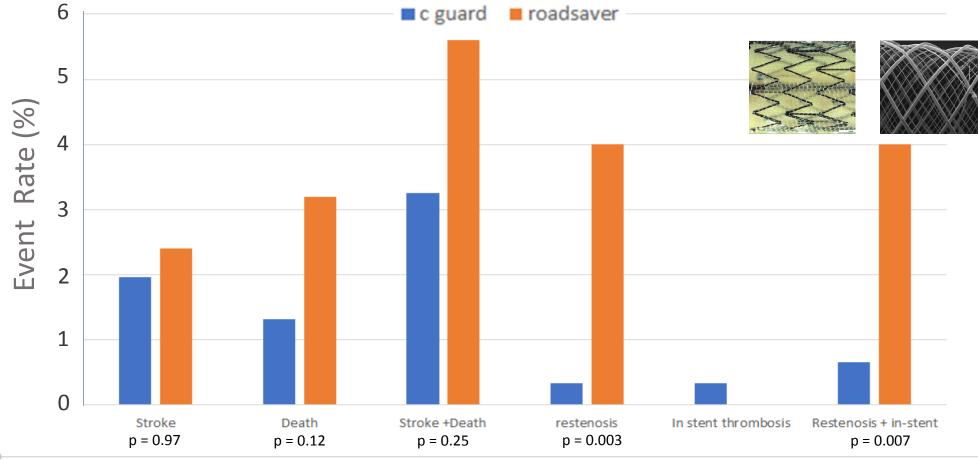

0.9(5)

Patient-level meta-analysis Dual-layer stents **556** patients / 4 trials

(both symptomatic and asymptomatic)

1-year data

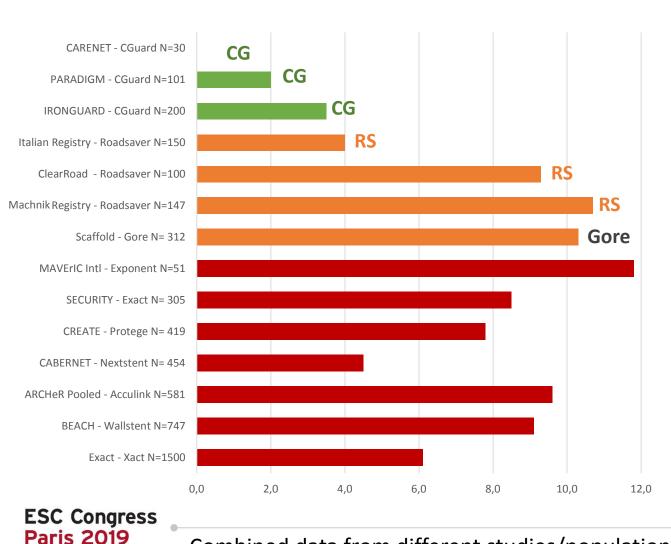
Results at one year according to Stent Platform



Patient-level meta-analysis Dual-layer stents **556** patients / 4 trials

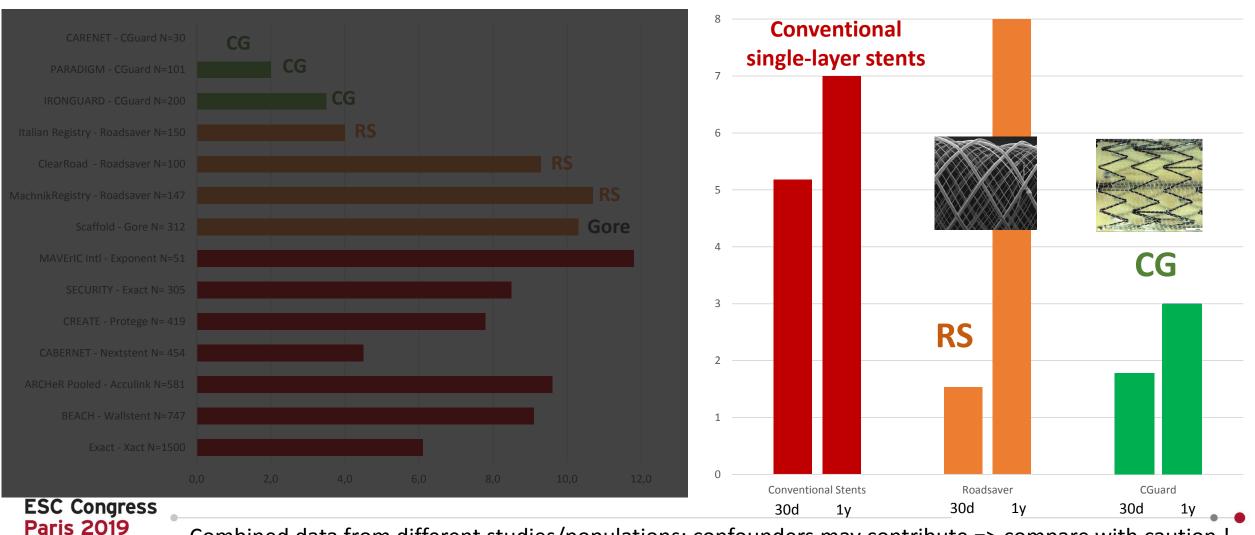
1-year data

(both symptomatic and asymptomatic)


Cumulative results at one year according to Stent Platform

Comparative analysis of the carotid stent data available in public domains by 07.2019 (journal publications plus congress presentations published on-line)

Cumulative Incidence of Death/Stroke/MI @ 30 days plus 1-year ipislateral stroke rate

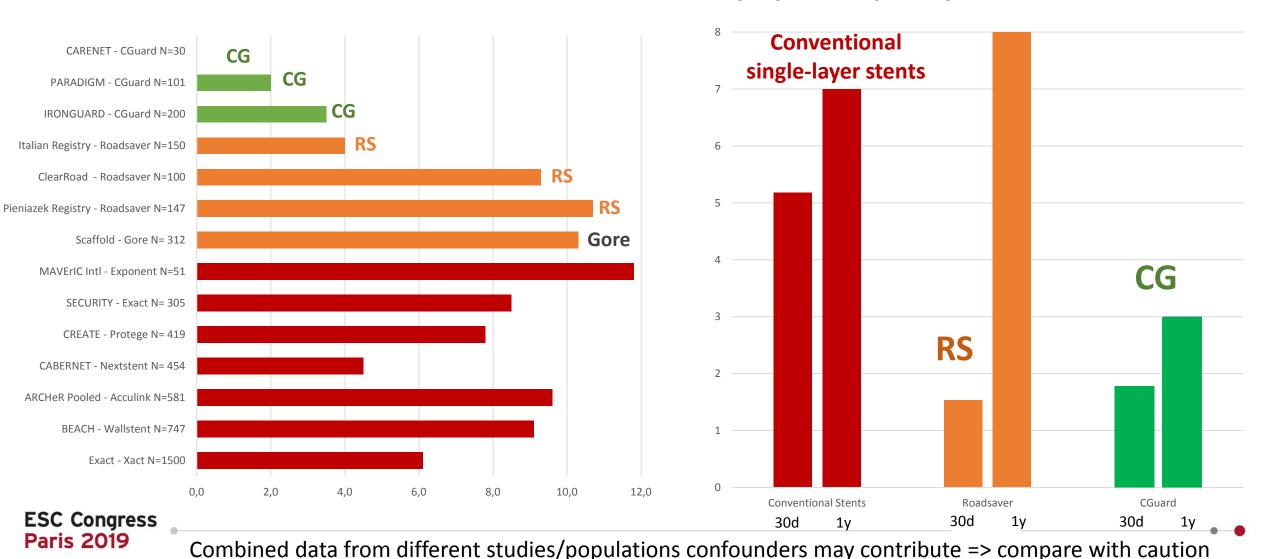

Combined data from different studies/populations; confounders may contribute => compare with caution!

30d

30d

30d

Cumulative Incidence of Death/Stroke/MI @ 30 days plus 1-year ipislateral stroke rate



Combined data from different studies/populations; confounders may contribute => compare with caution!

Comparative analysis of the carotid stent data available in public domains

(journal publications plus congress presentations published on-line)

Cumulative Incidence of Death/Stroke/MI @ 30 days plus 1-year ipislateral stroke rate

Determining the type of intervention...

Endo: If one can safely treat high-risk patients/lesions why not average-risk ones?

Q5

Please vote

For <u>your</u> 70 yo Mother/Father, with a clearly increasing asymptomatic CS carotid stenosis

You suggest (NB. you have access to a skilled operator):

- A. OMT + Surgery (CEA)
- B. OMT + Neuroprotected CAS with plaque sequestration
- C. OMT + Wait for symptoms of cerebral damage (TIA or

CONCLUSIONS

- The prevalence of asymptomatic carotid stenosis is similar to that of Atrial Fibrillation
- "Asymptomatic" carotid stenosis is <u>not</u> (at least: <u>not</u> universally) a benign disease
- Most strokes do <u>not</u> give a warning
- There is no evidence that Optimized Medical Therapy is sufficient to protect against CS-related stroke (it may *reduce* or *delay* but not abolish the stroke risk)
- Limiting interventional treatment (CEA or CAS) to symptomatic patients is for those with a stroke treating TOO LATE
- Novel endovascular techniologies (proximal neuroprotection, micro-net covered stents)
 allow safe endovascular plaque sequestration and may constitute a game-changer

ESC Congress Paris 2019

Stroke Risk Stratification tools - 2019

AFib

Carotid Stenosis

ESC Congress Paris 2019

Stroke Risk Stratification tools - 2019

CHADS₂ Calculator for Atrial Fibrillation

AFib

Evaluates ischemic stroke risk in patients with atrial fibrillation

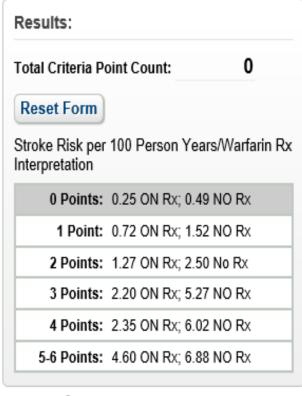
	Poss. Point
Yes No	+1
Yes No	+1
Yes No	+2
Yes No	+1
Yes No	+2
Yes No	+1
Yes No	+1
Yes No	+1
	Yes No Yes No Yes No Yes No Yes No

Results: 0 **Total Criteria Point Count:** Reset Form Stroke Risk per 100 Person Years/Warfarin Rx Interpretation 0 Points: 0.25 ON Rx; 0.49 NO Rx 1 Point: 0.72 ON Rx; 1.52 NO Rx 2 Points: 1.27 ON Rx; 2.50 No Rx 3 Points: 2.20 ON Rx; 5.27 NO Rx 4 Points: 2.35 ON Rx; 6.02 NO Rx 5-6 Points: 4.60 ON Rx; 6.88 NO Rx

Carotid Stenosis

The ABC (age, biomarkers, clinical history)-stroke risk score²

- Age
- NT-proBNP and cTn-hs
- Prior stroke/TIA


Stroke Risk Stratification tools - 2019

CHADS₂ Calculator for Atrial Fibrillation

AFib

Evaluates ischemic stroke risk in patients with atrial fibrillation

	Poss. Point
Yes No	+1
Yes No	+1
Yes No	+2
Yes No	+1
Yes No	+2
Yes No	+1
Yes No	+1
Yes No	+1
	Yes No Yes No Yes No Yes No Yes No

Carotid Stenosis

The ABC (age, biomarkers, clinical history)-stroke risk score²

- Age
- NT-proBNP and cTn-hs
- Prior stroke/TIA

ESC Congress Paris 2019

Take-home messages

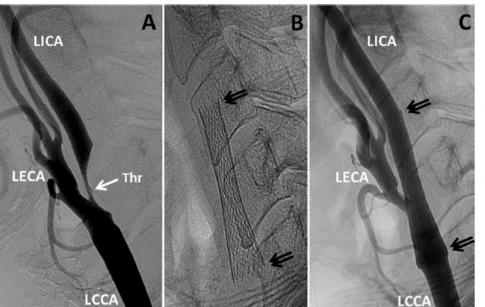
- CS-related Strokes should be PREVENTED rather than experienced
- IMPLEMENT the evidence we have today
- STRIVE for improved risk-stratification tools in carotid stenosis
- All-comer patient registries will guide real-life decision-making
- $\downarrow \downarrow \downarrow$ Invasiveness of Intervention

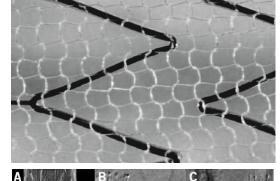
ESC Congress Paris 2019

Double-Layer Carotid Stents: From the Clinical Need, through a Stent-in-Stent Strategy, to Effective Plaque Isolation... the Journey Toward Safe Carotid Revascularization Using the Endovascular Route

Journal of Endovascular Therapy 2019, Vol. 26(4) 572–577 © The Author(s) 2019 Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1171/526602819861546 www.jevt.org

(\$)SAGE


Piotr Musiałek, MD, DPhil¹ and Gary S. Roubin, MD, PhD²


Keywords


carotid artery stenosis, carotid artery stenting, carotid endarterectomy, closed-cell stent, MicroNET, open-cell stent, plaque protrusion, stent-graft, restenosis, double-layer stent, unstable plaque

Both surgical and endovascular routes of carotid revascularization are associated with the risk of symptomatic and asymptomatic cerebral embolism. ¹⁻³ Optimized pharmacotherapy, the mainstay of atherosclerosis management, can reduce or delay but not abolish the risk of stroke from atherosclerotic carotid artery stenosis. ⁴⁻⁷ Interventional elimination or sequestration of the thromboembolic carotid plaque ⁸⁻¹⁰ remains an important consideration in a significant proportion of patients if carotid stenosis—related strokes are to be prevented rather than experienced. This is the focus

and the stent free-cell area also affect the risk of embolism after stent placement. Thus, while optimized neuroprotection during CAS may minimize intraprocedural cerebral embolism, ^{18-20,23,24} the problem of early or delayed post-procedural embolism remains. ^{3,25-27} With optimal patient selection technique and antiplatelet therapy, post-stent embolic phenomena are largely related to intrastent plaque prolapse, balloon trauma, and subsequent embolization. This may occur after the period of intraprocedural cerebral protection using flow reversal techniques and/or filters.

Endovasc. reconstruction with Plaque sequestration

ESC Congress Paris 2019

Stent-in-stent technique for unstable plaque (G. Roubin, J Vitek 1999)