MicroNET-Covered Self-EXpandable STent In High-Risk Vascular Lesions Beyond The CArotid Bifurcation: The EXTRA-GUARD Multi-center Multi-specialty Study

Addressing unmet endo-vascular needs...

Symptomatic, Thrombotic High-risk iliac
Symptomatic, v. large plaque burden Subclavian
V. Highly-Symptomatic (NSTEMI) Large-Diameter Thrombotic Saphenous Vein Graft
V. Highly-Calcific Large-Diameter Thrombotic Saphenous Vein Graft
TIAS -> Retinal Stroke ostial CCA

...beyond the carotid bifurcation

Jagiellonian University Dept of Cardiac & Vascular Diseases and John Paul II Hospital, Kraków, Poland
Dept. of Vascular Surgery, E.N. Meshalkin Research Institute, Novosybirsk, Russian Federation
Dept of Vascular Surgery, Jan Kochanowski University Hospital, Kielce, Poland

Supported by a research grant from the Jagiellonian University Medical College (ZDS/007819)
Background

Thrombotic (T), Highly-Calcific (HC) and High-plaque burden (HPB), symptomatic arterial lesions pose a significant clinical and procedural challenge in vascular medicine because of the risk of embolism (on the one side of the complication/risk spectrum) and perforation (on the other); the endovascular procedures in T, HC and HPB are often hard - or impossible - to optimize using conventional stents.

The Device

CGuard™ Embolic Prevention Stent System

<table>
<thead>
<tr>
<th>System specifications</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Stent type</td>
<td>Nitinol – self expanding</td>
</tr>
<tr>
<td>Micronet aperture size</td>
<td>150-180 μm</td>
</tr>
<tr>
<td>Guidewire</td>
<td>0.014”</td>
</tr>
<tr>
<td>Sizes</td>
<td></td>
</tr>
<tr>
<td>- Diameter</td>
<td>6-10mm</td>
</tr>
<tr>
<td>- Length</td>
<td>20-60mm</td>
</tr>
</tbody>
</table>

This stent design performs very well in high-risk (such as thrombotic & highly calcific) carotid lesions.

Nitinol frame open-cell area ≈ 21 mm²

MicroNet closed-cell area ≈ 0.3mm²

LARGEST

SMALLEST
Aim

- To evaluate feasibility/efficacy of the CGuard™ Embolic Prevention Stent System use to address unmet needs in consecutive high-risk angioplasty (symptomatic T, HC, HPB) in vascular beds beyond the carotid bifurcation.

Methods

- Multi-center, multi-specialty study in high-risk (T, HC and HPB) endovascular revascularization

- Currently 25 consecutive patients recruited (9 women); 31 arteries treated

- Mandatory clinical and CT angiographic follow-up at 6-12mo

Already completed in 17 (in-the-window) out of the presently total 25 subjects

References

Thrombus-containing / ruptured lesions

Safe & Effective endovascular reconstruction in absence of restenosis
Thrombus-containing / ruptured lesions

Safe & Effective endovascular reconstruction in absence of restenosis
EXTRA-GUARD Study

Thrombus-containing / ruptured lesions

Safe & Effective endovascular reconstruction in absence of restenosis
Highly-calcific lesions

Safe & Effective endovascular reconstruction in absence of restenosis
High-risk Ostial Lesions
(note adequate radial force and placement precision)

OPTIMAL angiographic + clinical + duplex result @ 12mo
(and LECA patent)

Safe & Effective endovascular reconstruction in absence of restenosis
MicroNET-Covered Self-**EX**pandable **ST**ent In High-**R**isk Vascular Lesions Beyond The **CA**rotid Bifurcation: The **EXTRA**-GUARD Multi-center Multi-specialty Study

Conclusions

- The MicroNET-Covered self-expandable stent system is well-suited to address unmet needs in high-risk PTA beyond the carotid bifurcation due to its unique mechanical properties (very high conformability and optimal radial force combined with plaque sequestration).

- The lesion spectrum extends from high-thrombus burden to high-calcium burden, through complex ostial lesions where this stent specific behavior (including lack of foreshortening/elongation) enables high placement precision.

- Sealing properties of the MicroNET enable gradual, large-balloon, high-pressure optimization of the angiographic effect – and absence of residual stenosis.

- EXTRA-GUARD study procedures showed no procedural complications, no device-related issues, and optimal clinical and (per-protocol mandatory) CT angio result at 6-12months.

- The study demonstrates full, optimal, endovascular reconstruction in absence of restenosis in vascular beds beyond the carotid bifurcation, consistent with **ENDOVASCULAR RECONSTRUCTION of normal anatomy**

Combined properties of self-expandable and balloon-expandable stent PLUS plaque sequestration

Supported by a research grant from the Jagiellonian University Medical College (ZDS/007819)
STUDY UPDATE

PARADIGM – Extend

402 patients / 436 arteries (f/u ≥30d; 31 Aug 2019)

- **Peri-procedural outcome**
 - 0 death/major stroke – 0%
 - 1 minor stroke – 0.25%
 - 1 MI (type2) – 0.25%

- **By 30 days**
 - 1 haemorrhagic transformation of prior ischaemic cerebral infarct leading to death – 0.25%
 - 1 bleeding-related death – 0.25%

1 haemorrhagic transformation of prior ischaemic cerebral infarct leading to death – 0.25%

NB. ALL-Comer, Unselected Population (eg. AFib 8.9%)

<table>
<thead>
<tr>
<th></th>
<th>1-12 mo</th>
<th>13-24 mo</th>
<th>25-36 mo</th>
<th>37-48 mo</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipsilateral stroke</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>any stroke</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>stroke-related death</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>MI or other non-cerebral VA</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>any death</td>
<td>13</td>
<td>10</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>in-stent velocities</td>
<td>PSV 0.79±0.41 m/s</td>
<td>PSV 0.75±0.36 m/s</td>
<td>PSV 0.75±0.36 m/s</td>
<td>PSV 0.74±0.28 m/s</td>
</tr>
<tr>
<td></td>
<td>EDV 0.21±0.11 m/s</td>
<td>EDV 0.19±0.09 m/s</td>
<td>EDV 0.20±0.09 m/s</td>
<td>EDV 0.20±0.07 m/s</td>
</tr>
</tbody>
</table>

Total

30-day death/MI/any stroke – 0.995% (4/402)

no post-proc. ischaemic stroke by 30 days – 0.0% (0/402)

Normal in-stent velocities; Low ISR rate: n=1 by 12mo, total of n=4; effective DEB-PTA