

TCT 2016 Featured Research

Innovation in Vascular Disease

Twelve-month Safety and Efficacy of CGuard[™] MicroNet–covered Embolic Prevention Stent Routine Use to Perform Carotid Revascularization: PARADIGM All-Comer Prospective Academic Study

P. MUSIALEK¹, A. MAZUREK¹, M. TRYSTULA², A. BORRATYNSKA³, A. LESNIAK-SOBELGA¹, M. URBANCZYK⁴, RP. BANYS⁴, A. KOZANECKI¹, P. WILKOLEK¹, A. BRZYCHCZY², L. PARTYKA⁵, W. ZAJDEL⁶, K. ZMUDKA⁶, P. PODOLEC¹

(1) Jagiellonian University Deptartment of Cardiac & Vascular Diseases;
 (2) Dept Vascular Surgery;
 (3) Neurology Outpatient Dept;
 (4) Dept Radiology, John Paul II Hospital;
 (5) KCRI, Krakow;
 (6) Dept Interventional Cardiology, John Paul II Hospital, Krakow

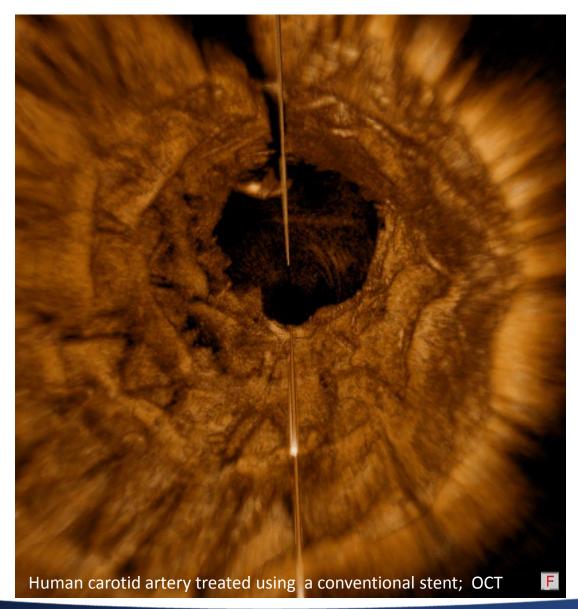
Jagiellonian University Department of Cardiac & Vascular Diseases John Paul II Hospital, Krakow, Poland

Disclosure Statement of Financial Interest

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

Affiliation/Financial Relationship

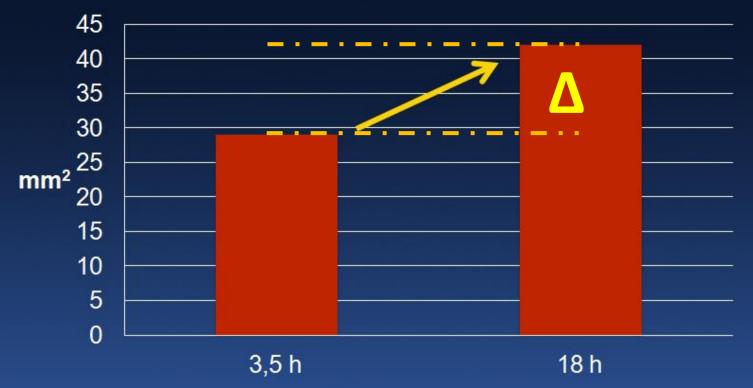
- Grant/Research Support
- Consulting Fees/Honoraria
- Major Stock Shareholder/Equity
- Royalty Income
- Ownership/Founder
- Intellectual Property Rights
- Other Financial Benefit


Company

- Abbott
- Abbott, Balton, InspireMD, Medtronic
- no
- no
- no
- no
- no

NB. <u>PARADIGM</u> is an Investigator-Initiated, <u>Non-Industry Funded</u>, Academic study supported by the Jagiellonian University Medical College and 'For the Heart' Foundation in Krakow, Poland

The Problem of Conventional Carotid Stents

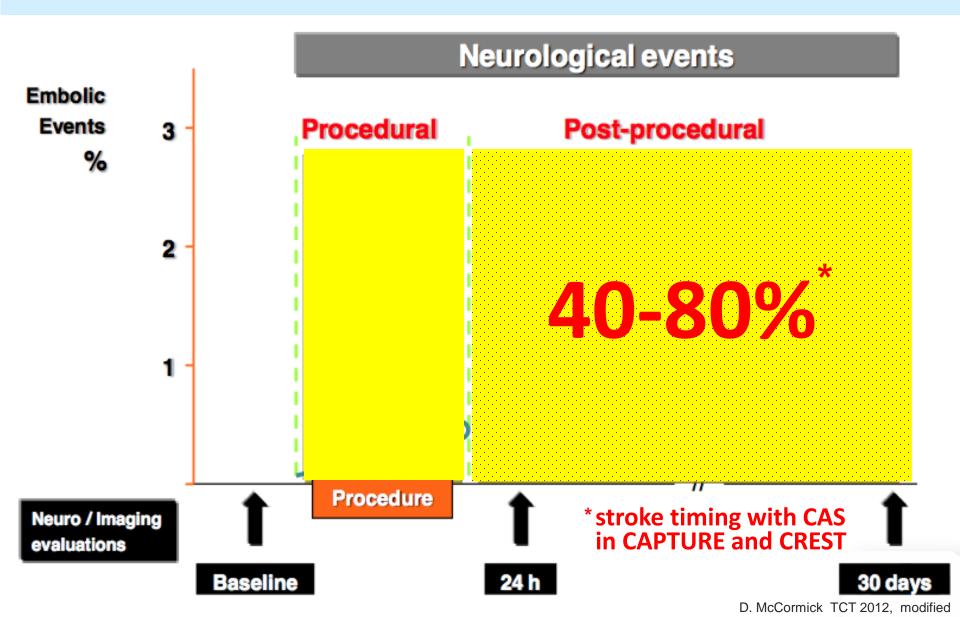


tct2016

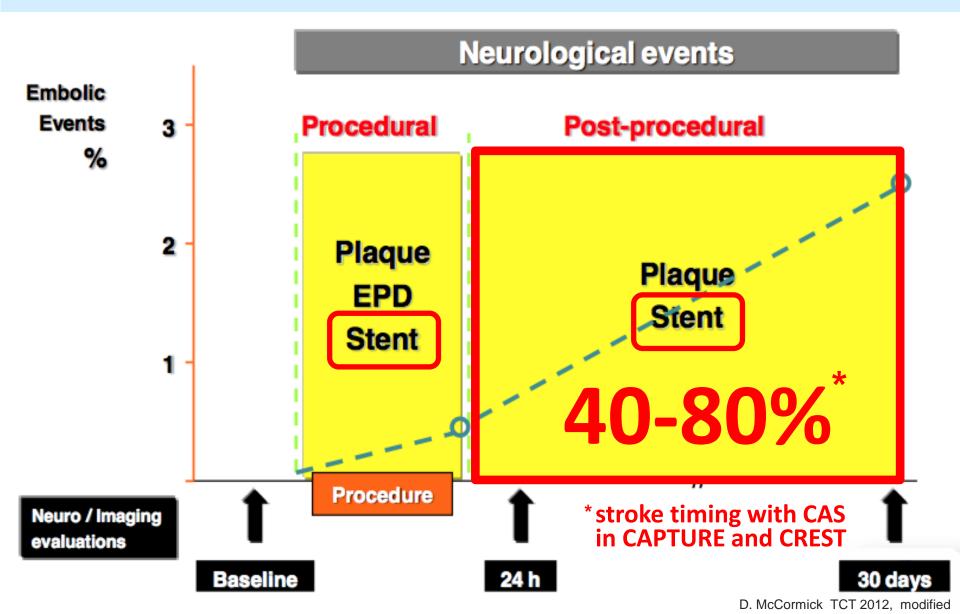
Image courtesy Dr Joan Rigla, MD PhD Perceptual Imaging Lab, Univerity of Barcelona

<u>Post-procedural</u> Embolization with conventional carotid stents DW-MRI post CAS

Mean total lesion area



Schofer J et al, JACC Cardiovasc interv 2008



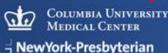
Timing of neuro-embolic events after CAS

Timing of neuro-embolic events after CAS

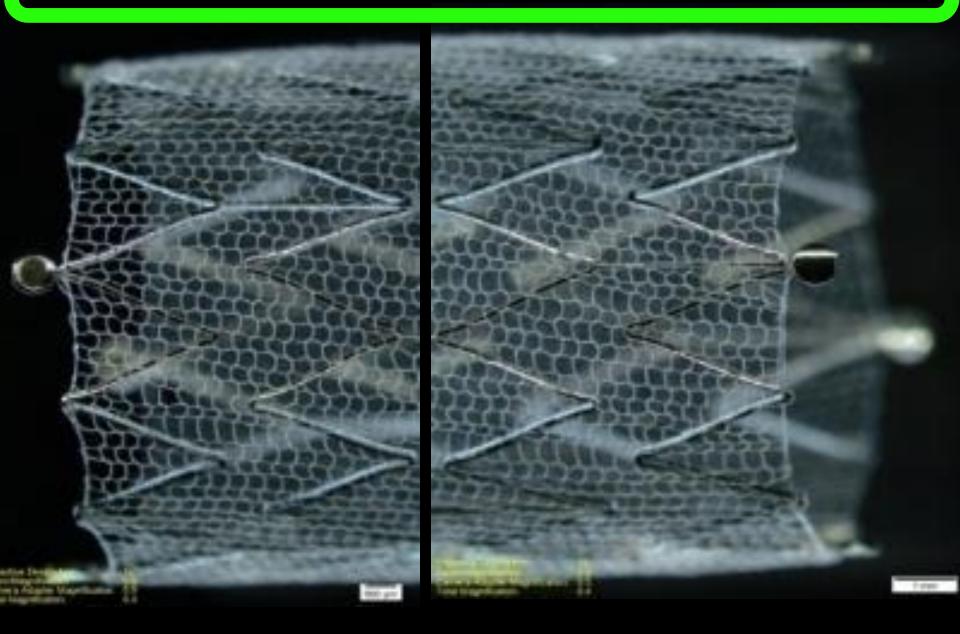

CEA excludes the plaque

CEA excludes the plaque In CAS, the <u>stent should</u> <u>exclude the plaque too</u>

an unmet clinical need

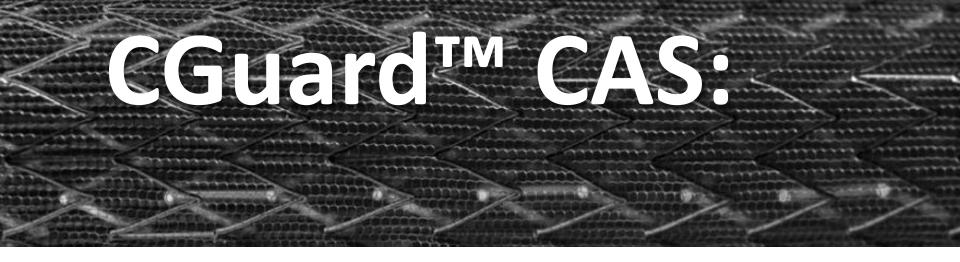

Anti - Embolic Carotid Stent

Plaque protrusion may lead to early and late distal embolization

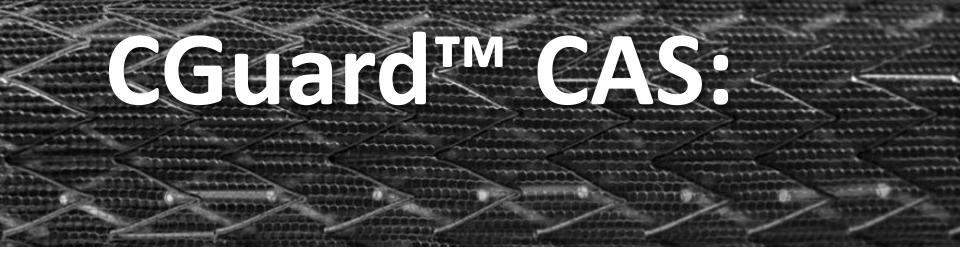


J. Schofer, P. Musialek et al. TCT 2014

CGuard[™] embolic prevention system

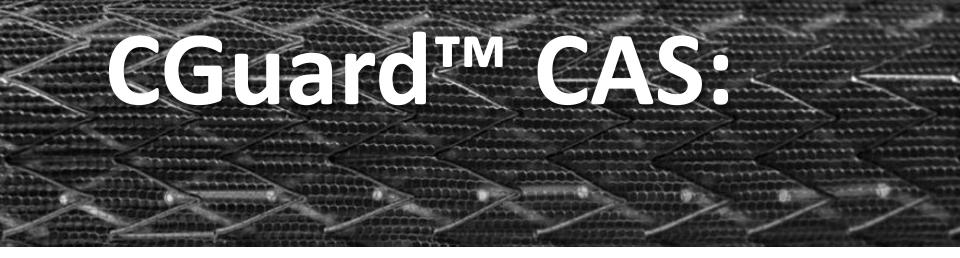


CGuard[™]– Carotid Embolic Prevention System


System specifications		
Stent type	Nitinol – self expanding	
Micronet aperture size	150-180 μm	
Guidewire	0.014"	
Sizes - Diameter - Length	6-10mm 20-60mm	
Lite Building and and		

CGuard[™]– Carotid Embolic Prevention System

System specifications		
Stent type	Nitinol – self expanding	
Micronet aperture size	150-180 μm	
Guidewire	0.014"	
Sizes - Diameter - Length	6-10mm 20-60mm	
ALL STATION		
E Mark – March 2014	Specific, carotid-dedicated	
Mark – March 2014 tinol frame open cell area $\approx 21 \text{ mm}^2$ croNet cell area $\approx 0.3 \text{ mm}^2$	Specific, carotid-dedicated LARGEST SMALEST	



Intra-procedural cerebral embolization is <u>minimized</u>

J. Schofer, P. Musialek, et al. JACC Interv 20152015;8:1229-1234

Intra-procedural cerebral embolization is <u>minimized</u>

 <u>Post-procedural procedural</u> cerebral embolization is <u>nearly-eliminated</u>

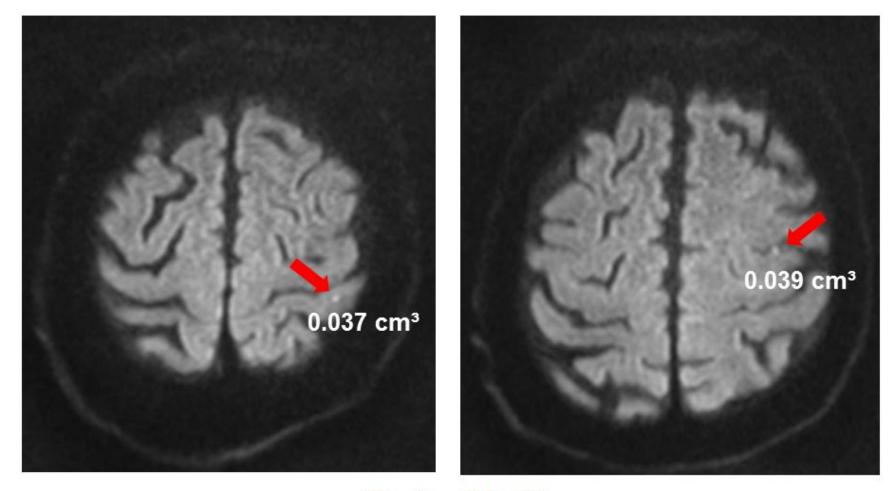
JACC: CARDIOVASCULAR INTERVENTIONS © 2015 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION PUBLISHED BY ELSEVIER INC.

A Prospective, Multicenter Study of a Novel Mesh-Covered Carotid Stent

The CGuard CARENET Trial

(Carotid Embolic Protection Using MicroNet)

Joachim Schofer, MD,* Piotr Musiałek, MD, DPHIL,† Klaudija Bijuklic, MD,* Ralf Kolvenbach, MD,‡ Mariusz Trystula, MD,† Zbigniew Siudak, MD,†§ Horst Sievert, MD||


ABSTRACT At B/L, 24-48h after CAS, and at 30 days

OBJECTIVES This study sought to evaluate the feasibility of the CGuard Carotid Embolic Protective Stent system—a novel thin strut nitinol stent combined with a polyethylene terephthalate mesh covering designed to prevent embolic events from the target lesion in the treatment of carotid artery lesions in consecutive patients suitable for carotid artery stenting.

BACKGROUND The risk of cerebral embolization persists throughout the carotid artery stenting procedure and remains during the stent healing period.

METHODS A total of 30 consecutive patients (age 71.6 \pm 7.6 years, 63% male) meeting the conventional carotid artery stenting inclusion criteria were enrolled in 4 centers in Germany and Poland.

The Power of DW-MRI...

48h after LICA-CAS

M. Urbanczyk, P. Banys, Dept. Radiology, JP2 Hospital, Krakow, Poland

CARENET DW-MRI analysis^{*}

DW-MRI analysis @ 48 hours			
	CARENET (n=27)	PROFI (all) (n=62)	ICSS⁺ (n=56)
Incidence of new ipsilateral lesions	37.0%	66.2%	68.0%
Average lesion volume (cm ³)	0.039	0.375	-
Maximum lesion volume (cm ³)	0.415)	

>10-fold reduction in cerebral lesion volume

*External Core Lab analysis (US)

Bijuklic et al. JACC, 2012; Bonati et. al, Lancet Neurol 2010 † bilateral lesions

J. Schofer, P. Musialek et al. JACC Intv 2015;8:1229-34

CARENET DW-MRI analysis^{*}

All but one peri-procedural ipsilateral lesions

RESOLVED

DW-MRI analysis @ 30 days*			
Incidence of new ipsilateral lesions	1		
Average lesion volume (cm ³)	0.08 ± 0.00		
Permanent lesions at 30 days	1		

*External Core Lab analysis (US)

J. Schofer, P. Musialek et al. JACC Intv 2015;8:1229-34

CARENET DW-MRI demonstrated **CGuard™ EPD MicroNet Embolic Prevention** EFFICACY

CGuard EPS Image Courtesy Dr Joan Rigla, MD PhD Perceptual Imaging Lab, Univerity of Barcelona

J. Schofer, P. Musialek, et al. JACC Interv 20152015;8:1229-1234

A Prospective, Multicenter Study of a Novel Mesh-Covered Carotid Stent

The CGuard CARENET Trial (Carotid Embolic Protection Using MicroNet)

Joachim Schofer, MD,* Piotr Musiałek, MD, DPHIL,† Klaudija Bijuklic, MD,* Ralf Kolvenbach, MD,‡ Mariusz Trystula, MD,† Zbigniew Siudak, MD,†§ Horst Sievert, MD||

RESULTS The primary combined endpoint was the procedure success of the CGuard system and the number and volume of new lesions on the ipsilateral side assessed by diffusion-weighted magnetic resonance imaging at 48 h post-procedure and at 30 days. The secondary endpoint was 30-day major adverse cardiac or cerebrovascular events (death, stroke, or myocardial infarction). Protection devices were used in all procedures. Procedure success was 100%, with 0% procedural complications. The 30-day major adverse cardiac or cerebrovascular events rate was 0%. New ipsilateral ischemic lesions at 48 h occurred in 37.0% of patients and the average lesion volume was 0.039 ± 0.08 cm³. The 30-day diffusion-weighted magnetic resonance imaging showed complete resolution of all but 1 periprocedural lesion and only 1 new minor (0.116 cm³) lesion in relation to the 48-h scan.

CONCLUSIONS The use of the CGuard system in patients undergoing carotid artery stenting is feasible. In addition, the benefit of using CGuard may extend throughout the stent healing period. (J Am Coll Cardiol Intv 2015;8:1229-34)

large for routine DW-MRI at 3 time points in relation to CAS

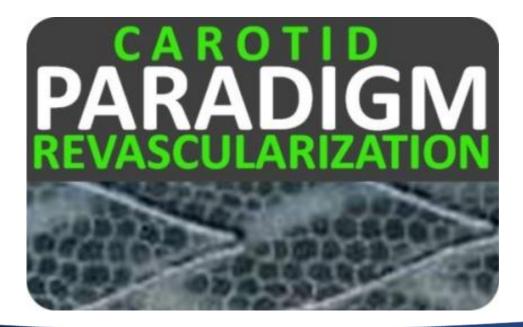
A Prospective, Multicenter Study of a Novel Mesh-Covered Carotid Stent

The CGuard CARENET Trial (Carotid Embolic Protection Using MicroNet)

Joachim Schofer, MD,* Piotr Musiałek, MD, DPHIL,† Klaudija Bijuklic, MD,* Ralf Kolvenbach, MD,‡ Mariusz Trystula, MD,† Zbigniew Siudak, MD,†§ Horst Sievert, MD||

RESULTS The primary combined endpoint was the procedure success of the CGuard system and the number and volume of new lesions on the ipsilateral side assessed by diffusion-weighted magnetic resonance imaging at 48 h post-procedure and at 30 days. The secondary endpoint was 30-day major adverse cardiac or cerebrovascular events (death, stroke, or myocardial infarction). Protection devices were used in all procedures. Procedure success was 100%, with 0% procedural complications. The 30-day major adverse cardiac or cerebrovascular events rate was 0%. New ipsilateral ischemic lesions at 48 h occurred in 37.0% of patients and the average lesion volume was 0.039 ± 0.08 cm³. The 30-day diffusion-weighted magnetic resonance imaging showed complete resolution of all but 1 periprocedural lesion and only 1 new minor (0.116 cm³) lesion in relation to the 48-h scan.

CONCLUSIONS The use of the CGuard system in patients undergoing carotid artery stenting is feasible. In addition, the benefit of using CGuard may extend throughout the stent healing period. (J Am Coll Cardiol Intv 2015;8:1229-34)


large for routine DW-MRI at 3 time points in relation to CAS

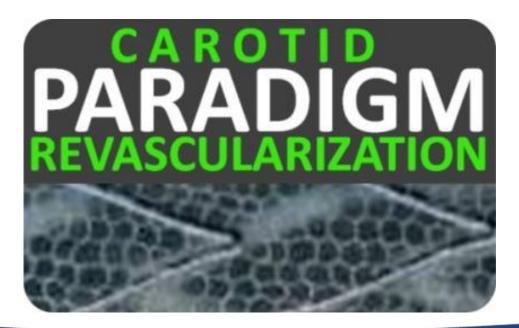
• *uderpowered* for clinical endpoints or any potential device-related events

<u>Prospective evaluation of All-comer perRcutaneous</u> c<u>ArotiD</u> revascularization In symptomatic and increased-stroke-risk asymptomatic carotid artery stenosis using the C<u>G</u>uard[™] <u>M</u>icroNet – covered embolic prevention stent system:

The **PARADIGM** study

Objective

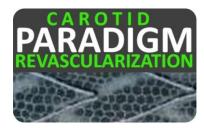
 to evaluate feasibility and outcome of <u>routine</u> anti-embolic stent system use in <u>unselected</u>, <u>consecutive</u> patients referred for carotid revascularization (<u>'all-comer</u>' study)



P. Musialek, A. Mazurek et al. *EuroIntervention* 2016;12:e658-70 **TCT 2016 Featured Research** (PARADIGM design and 30-day outcome data)

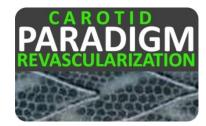
The PARADIGM study

target


100 consecutive CAS pts / 12mo*

* determined by typical yearly volume

PARADIGM


?

Study questions:

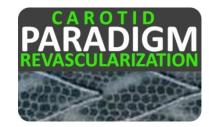
- (1) feasibility of routine use of CGuard MN-EPS in an all-comer carotid stenosis requiring revasc.
- (2) CGuard EPS device/procedure acute success rate
- (3) safety clinical efficacy @30-days and @12 months
- (4) proportion of all-comer carotid stenosis patients that can be treated through the endovascular route
- (5) feasibility of MN-EPS post-dilatation optimization (full endo reconstuction; "CEA-like" effect of CAS)

PARADIGM

Methods:

- academic cardio-vascular centre
- investigator-initiated study
- not industry-funded
- all-comer inclusion (target = 101 consecutive patients)
- no exclusion critera, all referrals tracked
- routine consultation and management pathways
- qualitative and quantitative lesion & stent evaluation
- investigator-independent neurological and angiographic evaluation, and external study data verification

PARADIGM Methods (cont'd):

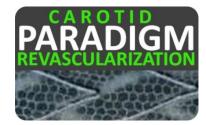

- <u>ASYMPTOMATIC</u> patients treated interventionally only if at /stroke risk
- established lesion-level increased-risk crieria used:
 - thrombus-containing
 - documented progressive
 - irregular and/or ulcerated
 - contralateral ICA occlusion/stroke
 - asymptomatic ipsilateral brain infarct

AbuRahma A et al. *Ann Surg.* 2003;238:551-562. Ballotta E et al. *J Vasc Surg* 2007;45:516-522. Kakkos SK et al. (ACSRS) *J Vasc Surg.* 2009;49:902-909. Lovett JK et al. *Circulation* 2004;110:2190-97 Nicolaides AN et al. *J Vasc Surg* 2010;52:1486-96. Taussky P et al. *Neurosurg Focus* 2011;31:6-17.

P. Musialek, A. Mazurek et al. *EuroIntervention* 2016;12:e658-70 (PARADIGM design and 30-day outcome data)

PARADIGM Methods: The CAS Procedure

- EPD use mandatory; EPD selection according to the 'Tailored CAS' algorithm^{*}
- Liberal postdilatation accepted in order to maximize potential for 'endovascular full reconstruction' (minimizing residual stenosis)
 - NB. 1. DWI evidence of effective MicroNet prevention against cerebral embolization (CARENET/PROFI)
 - Residual stenosis after CAS as independent predictor of in-stent restenosis


Van Laanen J et al. *J Cardiovasc Surg*Cosottini M et al. *Stroke Res*Musialek P et al. *J Endovasc Ther*Wasser K et al. *J Neurol*

* Pieniazek P, Musialek P et al. *J Endovasc Ther* 2008;15:249-62. Cremonesi A et al. *EuroInervention* 2009;5:589-98. Pieniazek P, Musialek P et al. *J Endovasc Ther* 2009;16:744-51.

P. Musialek, A. Mazurek et al. *EuroIntervention* 2016;12:e658-70 **TCT 2016 Featured Research** (PARADIGM design and 30-day outcome data)

PARADIGM

PARADIGM: investigator – independent

external source data verification

external angiographic analysis

external statistical analysis

Excellence in clinical research

P. Musialek, A. Mazurek et al. *EuroIntervention* 2016;12:e658-70 (PARADIGM design and 30-day outcome data)

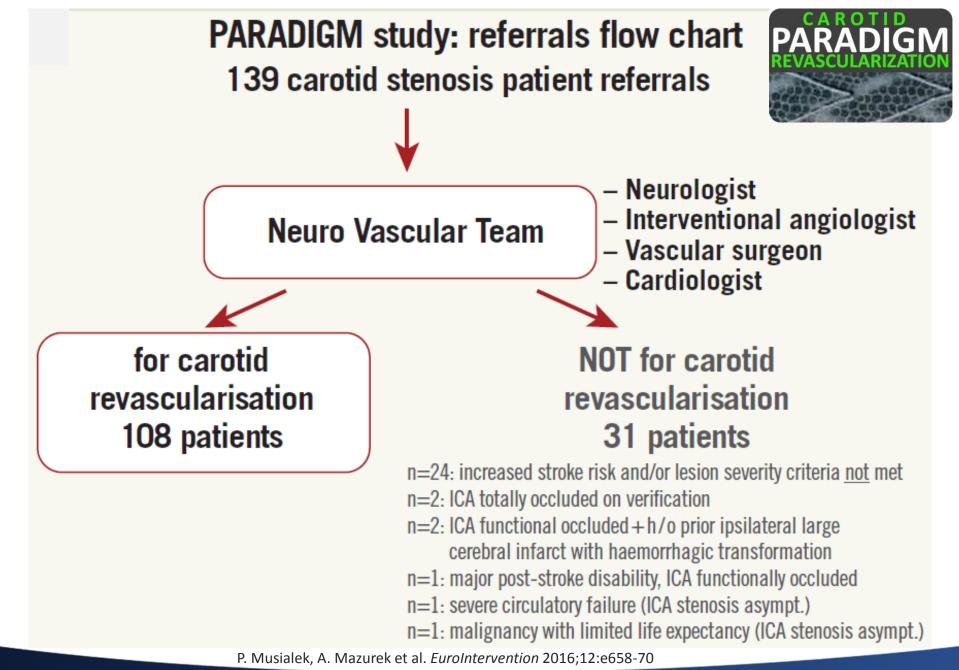
PARADIGM Study endpoints:

• **PRIMARY** a composite of **death**, **stroke** (major/minor) and MI in the peri-procedural period, at 30 days, and up to 12 months

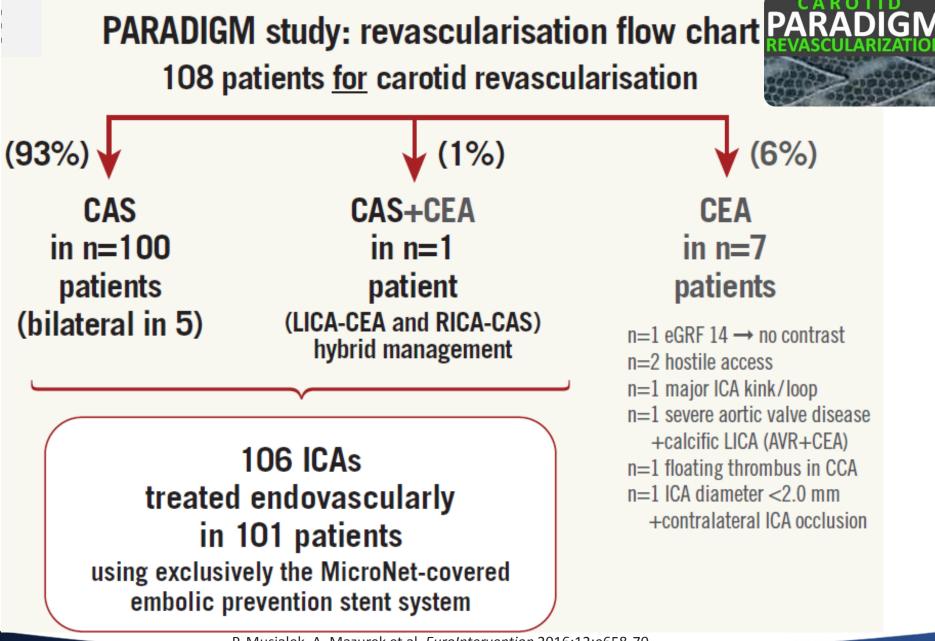
• SECONDARY

 acute study device success defined as ability to treat the index carotid lesion using the study device (CGuard MN-EPS) successfully delivered and deployed at the lesion site, obtaining residual diameter stenosis <30% by QA
 procedural success defined as device success in absence of any vascular complication that would require interventional management

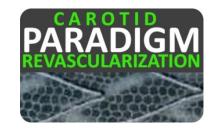
- (3) in-stent velocities/patency (Duplex)
- (4) long-term clinical efficacy:


stroke and stroke-related death

- 30 days


- every 12 months up to 5y

P. Musialek, A. Mazurek et al. *EuroIntervention* 2016;12:e658-70 **TCT 2016 Featured Research** (PARADIGM design and 30-day outcome data)


tct2016

P. Musialek, A. Mazurek et al. EuroIntervention 2016;12:e658-70

2016

Table 1. Clinical characteristics of the study patients (n=101).

Age, mean±SD (min-max)	69±7 (51-86)	
Male, % (n)	70% (71)	
Symptomatic, % (n)	55% (55) 🧲	
Symptomatic ≤14 days, % (n)	22%* (12)	
Acutely symptomatic (emergent CAS), % (n)	14%* (9)	
Index lesion (CAS), % (n)		
RICA	51% (52)	
LICA	49% (49)	
RICA+LICA	5% (5)	
CAD, % (n)	63% (64)	
h/o MI, % (n)	32% (32)	
CABG or PCI in the past, % (n)	40% (40)	
PCI as bridge to CAS, % (n)	18% (18**)	
AFib (h/o or chronic), % (n)	9% (9)	
Diabetes, % (n)	41% (41)	
h/o neck or chest radiotherapy, % (n)	6% (6)	
*proportion of symptomatic patients; **simultaneous (one-stage) PCI+CAS in 4 patients; h/o: history of		

EuroIntervention 2016;12:e658-70

Table 1. Clinical characteristics of the study patients (n=101).

Age, mean±SD (min-max)	69±7 (51-86)	
Male, % (n)	70% (71)	
Symptomatic, % (n)	55% (55)	
Symptomatic ≤14 days, % (n)	22%* (12)	
Acutely symptomatic (emergent CAS), % (n)	14%* (9)	
Index lesion (CAS), % (n)		
RICA	51% (52)	
LICA	49% (49)	
RICA+LICA	5% (5)	
CAD, % (n)	63% (64)	
h/o MI, % (n)	32% (32)	
CABG or PCI in the past, % (n)	40% (40)	
PCI as bridge to CAS, % (n)	18% (18**)	
AFib (h/o or chronic), % (n)	9% (9)	
Diabetes, % (n)	41% (41)	
h/o neck or chest radiotherapy, % (n)	6% (6)	
*proportion of symptomatic patients; **simultaneous (one-stage) PCI+CAS in 4 patients; h/o: history of		
Europeter contine 2016:12:0050 ZO		

EuroIntervention 2016;12:e658-70

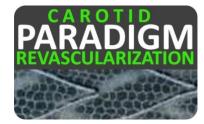
Table 2. Quantitative lesion characteristics (n=106), NPD type, CGuard MN-EPS in situ characteristics.

	All (n=106 lesions)	Symptomatic n=55	Asymptomatic n=51	<i>p</i> -value
Before CAS				
PSV, m/s	3.7±1.2	3.7±1.1	3.7±1.2	0.964
EDV, m/s	1.2±0.5	1.1±0.5	1.2±0.5	0.268
Diameter stenosis % (QA)	83±9	80±9	86±9	0.002
CAS				
EPD type				
Proximal	46% (49)	56% (31)	35% (18)	0.030
Distal	54% (57)	44% (24)	65% (33)	
ICA reference diameter	* Emboshield (n=11); FilterWire (n=15); Spider (n=31)			

external Corelab

4.99 ± 0.36mm (from 4.27 to 6.02 mm)

Lesion length 19.9 ± 5.8mm (from 8.19 to 30.25 mm) # Gore FlowReversal (n=6) or flow reversal with MoMa (n=43); (mean flow reversal time was 6min 35s, from 3min 51s to 11min 2s)


Direct (primary) stenting in 9 (8.5%); predilatation in 97 (91.5%) lesions Postdil. balloon: ø 4.5mm (n=9); ø 5.0mm (n=55); ø 5.5mm (n=37); ø 6.0mm (n

EuroIntervention 2016;12:e658-70

Table 2.(cont'd) CGuard MN-EPS in situ characteristics.

	All (n=106 lesions)	Symptomatic n=55	Asymptomatic n=51	<i>p</i> -value
After CAS				
Stent length (QA, CoreLab) [§]				N/A
Nominal 30 mm	29.82±0.68	29.83±0.76	29.80±0.59	
(min-max)	(27.83-32.62)	(27.83-32.62)	(28.83-31.89)	
Nominal 40 mm	39.89±0.59	39.80±0.70	39.97±0.51	
(min-max)	(38.88-41.43)	(38.88-41.43)	(39.14-41.01)	
Residual diameter stenosis	6.7±5%	6.1±5%	7.8±5%	0.262
In-stent PSV, m/s	0.68±0.29	0.64±0.26	0.72±0.31	0.121
in-stent EDV, m/s	0.18±0.08	0.16±0.07	0.19±0.08	0.087
[§] In three cases two overlapping stents were used to cover the whole lesion length; these are				

external Corelab analysis

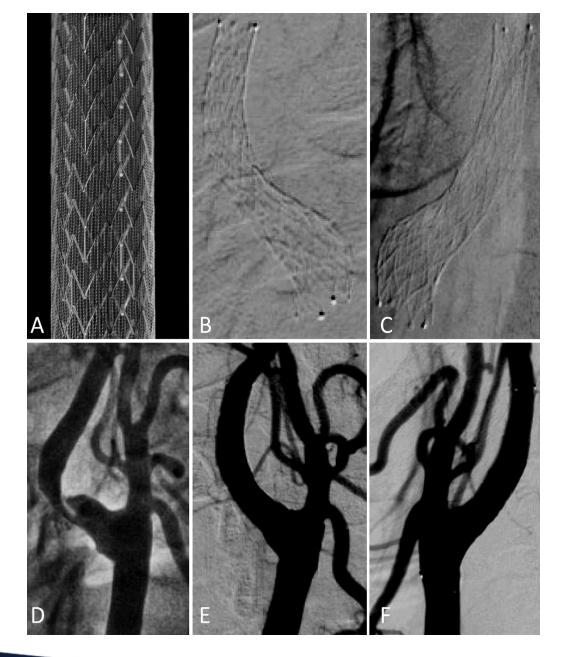
not included in the in situ stent length evaluation. N/A: not applicable

no foreshortening, no elongation placement precision \Rightarrow \Rightarrow

EuroIntervention 2016;12:e658-70

Table 2.(cont'd) CGuard MN-EPS in situ characteristics.

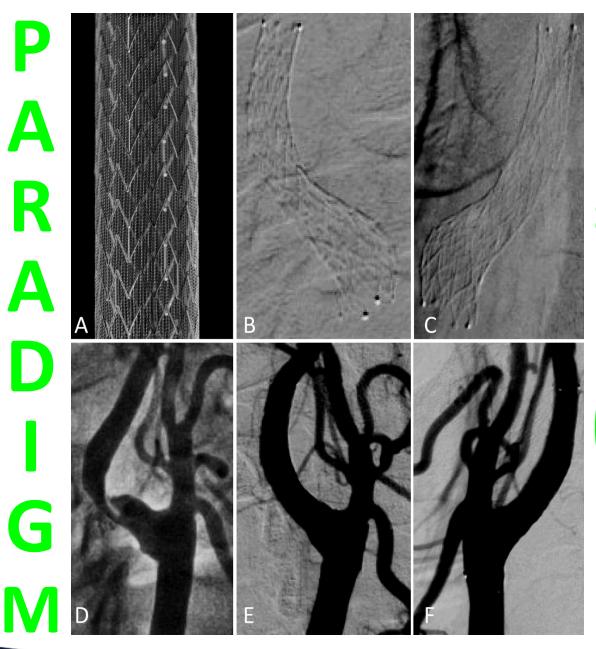
	All (n=106 lesions)	Symptomatic n=55	Asymptomatic n=51	<i>p</i> -value
After CAS				
Stent length (QA, CoreLab) [§]				N/A
Nominal 30 mm	29.82±0.68	29.83±0.76	29.80±0.59	
(min-max)	(27.83-32.62)	(27.83-32.62)	(28.83-31.89)	
Nominal 40 mm	39.89±0.59	39.80±0.70	39.97±0.51	
(min-max)	(38.88-41.43)	(38.88-41.43)	(39.14-41.01)	
Residual diameter stenosis	6.7±5%	6.1±5%	7.8±5%	0.262
In-stent PSV, m/s	0.68±0.29	0.64±0.26	0.72±0.31	0.121
in-stent EDV, m/s	0.18±0.08	0.16±0.07	0.19±0.08	0.087
[§] In three cases two overlapping stents were used to cover the whole lesion length; these are not included in the in situ stent length evaluation. N/A: not applicable				



external Corelab analysis

\Rightarrow 'CAE-like' effect of CAS

EuroIntervention 2016;12:e658-70



EuroIntervention 2016;12:e658-70

systematic

CEA-like effect of CAS

EuroIntervention 2016;12:e658-70

PARADIGM

CAS feasibility using the study-tested MicroNet-covered embolic prevention stent system 100% CAS (n= 106)

(ie, no cross-over to other stents or other carotid stent use during the whole study period)

 Device success 	99.1%	(n=105) [*]
 Procedure success 	99.1%	(n=105)*
 Transient dopamine infusion 	15.1%	(n = 16)
 Debris in EPD 	17.9%	(n = 19)
 Vascular plug closure 	53.8%	(n = 57)
 Access site complications 	0%	(n = 0)

* in 1 case no stent post-dilatation was performed due to profound bradycardia-asystole, and 46% residual diameter stenosis was left (ie, above the Protocol-defined threshold <30% DS for "device success")

ECA patency data

6/106 (5.6%) ECAs were occluded on the index side prior to CAS 3/100 (3.0%), with severe stenosis prior to CAS, occluded at CAS NO ECA occlusion occurred between CAS and 30 days

30-day neurological, duplex, and cardiologic follow up was executed in 100% patients (101) and arteries (106)

- => no concern

PARADIGM: 30 days

Clinical Results (MACNE)

O peri-procedural death/major stroke/MI 0%
1 peri-procedural minor stroke* 0.9%
O new clinical events by 30 days 0% (100% follow-up, independent neuro evaluation)

* One patient, with symptomatic RICA stenosis (minor right-hemispheric stroke 2 months prior to CAS), had hypotonia and transient, fluctuating cognitive dysfunction at 24-48h after CAS. The patient had additional neurologic evaluation on discharge (day 7) that showed no change in NIH-SS [=3] and no change in modified Rankin scale [=1] against 48h (and baseline) evaluation. CT scan on day 2 showed no new cerebral lesions but day 6 CT indicated an extension of the prior lesion in the right hemisphere. The event, in absence of right haemispheric symptoms and in absence of any clinical sequelae, was CEC-adjudicated as 'minor stroke in relation to CAS'.

EuroIntervention 2016;12:e658-70

Novel PARADIGM in Carotid Revascularization:

12month data

Clinical & Duplex US Outcome Data

TCT 2016

@ 12 months

CGuard™ EPS Carotid **PARADIGM** Study <u>12mo Clinical Outcome Data</u>

12month data

- 106 index arteries / 101 study subjects
- no patient withdrawals by 12 months
- 100% clinical
 - neurological 12 month follow up
 - Duplex US

CGuard™ EPS Carotid **PARADIGM** Study <u>12mo Clinical Outcome Data</u>

12month data

- 106 index arteries / 101 study subjects
- no patient withdrawals by 12 months
- 100% clinical
 - neurological 12 month follow up
 - Duplex US

Per-Protocol independent neurological evaluation

CGuard™ EPS Carotid **PARADIGM** Study <u>12mo Clinical Outcome Data</u>

12month data

- 106 index arteries / 101 study subjects
- no patient withdrawals by 12 months
- 100% clinical
 - neurological 12 month follow up
 - Duplex US

- 1 cardiac death @ 11mo (man 68y, heart failure death)
- 3 non-cardiac deaths @ 3mo, 5mo, 11mo
 - urosepsis (woman 73y)
 - pulmonary embolism (woman 67y)
 - microcellular pulmonary cancer (man 71y)

CGuard™ EPS Carotid **PARADIGM** Study **12mo Clinical Outcome Data**

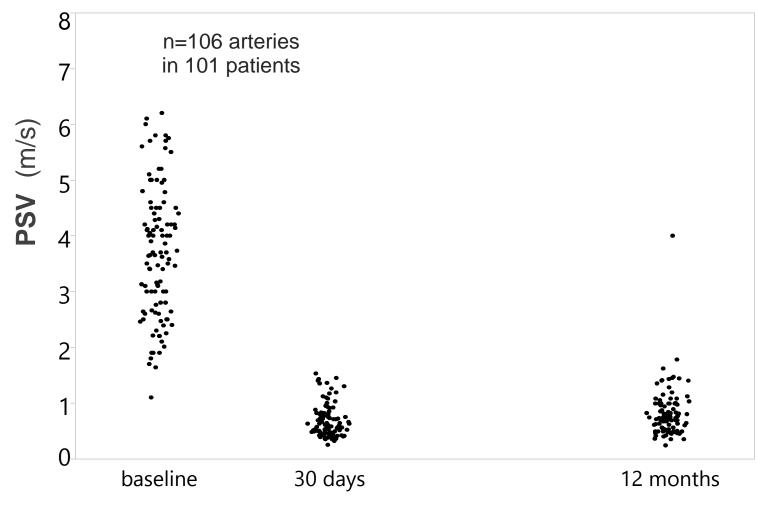
12month data

• 0% stroke • 0% TIA • 0% MI

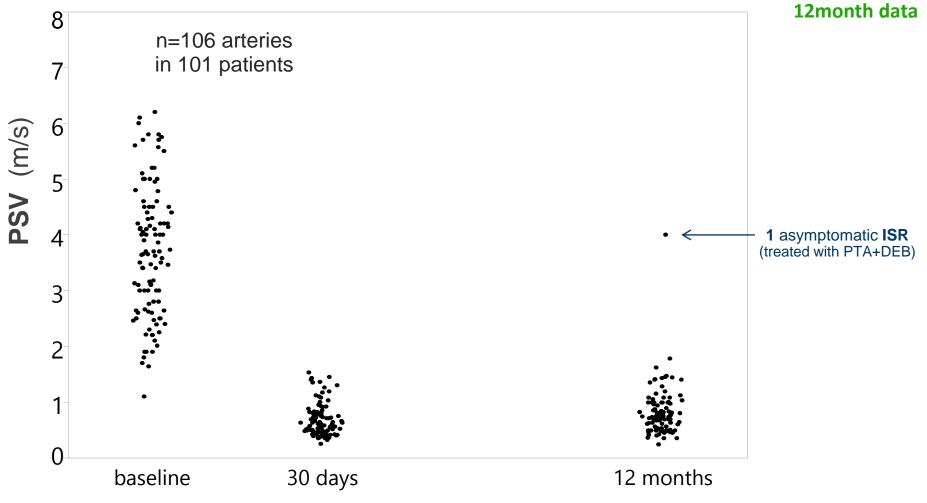
between 30 days and 12 months

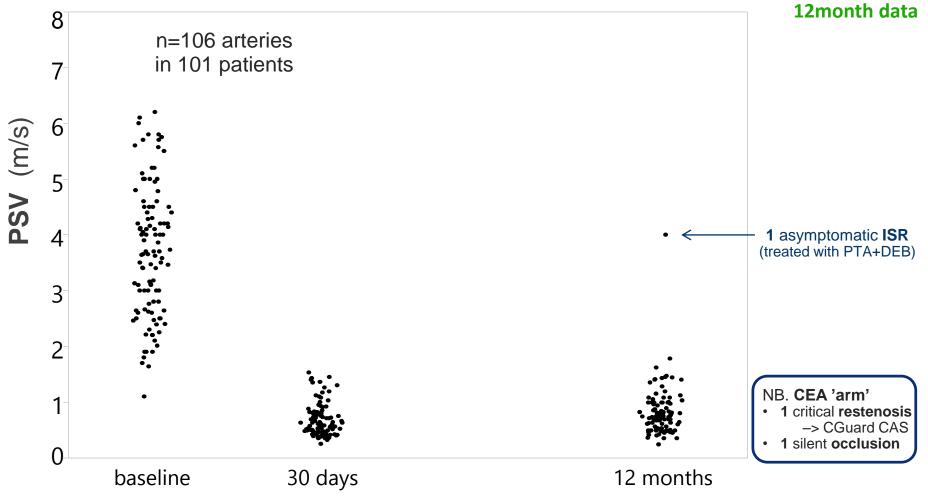
in n=101 / stroke-risk patients (55% symptomatic)

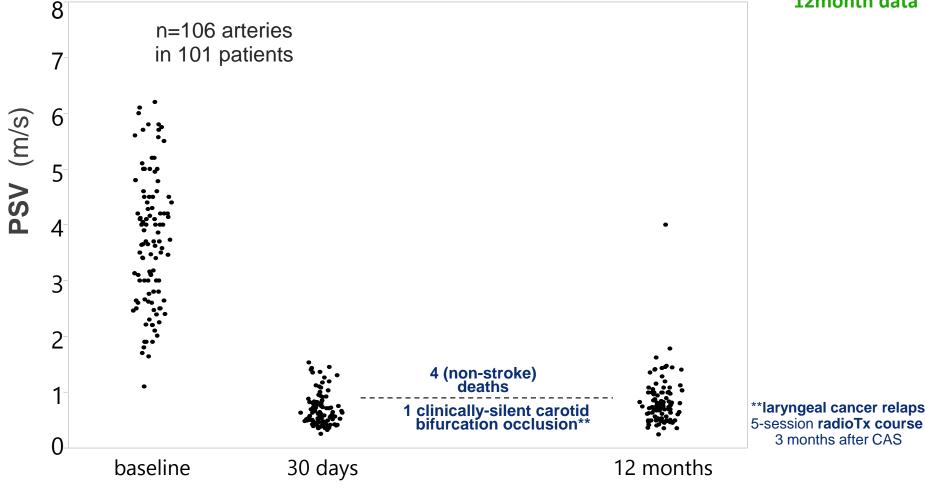
12month data

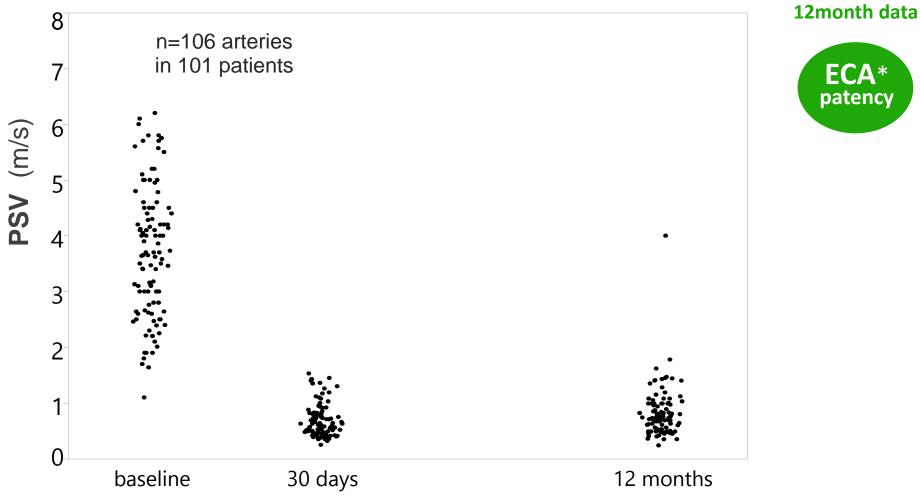

PARADIGM 12 months

NO device-related adverse events
NO procedure-related events

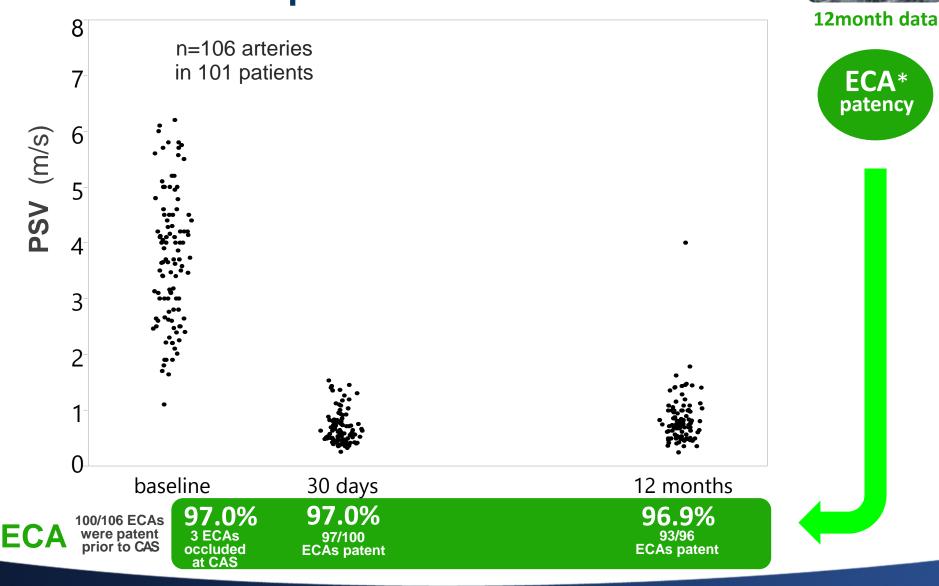



12month data

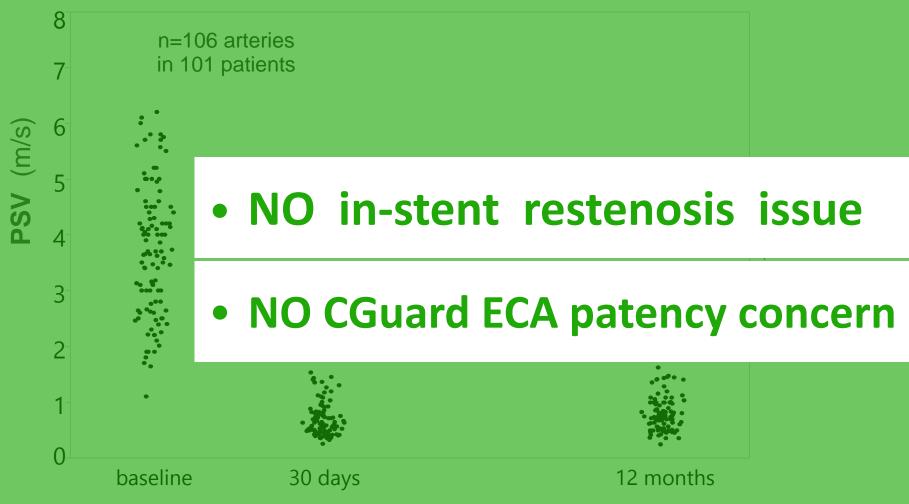




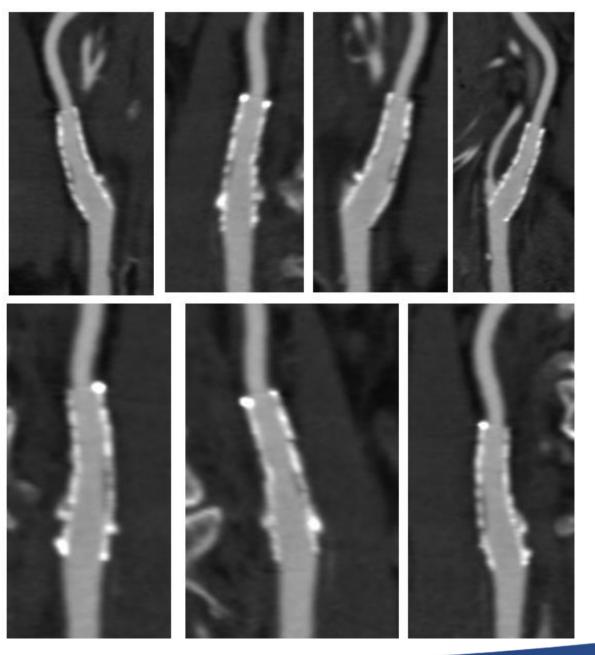
12month data



* patient alive, target CCA and ICA patent


* patient alive, target CCA and ICA patent

* per stented ICAs/ patent (patient alive)


t2016

CGuard[™] image courtesy C. Wissgott and colleagues. *J Endovasc Ther.* 2016 Oct 12 [epub ahead of print]

CGuard[™] EPS Carotid **PARADIGM** Study **12-month Data**

Conclusions

CGuard™ EPS Carotid PARADIGM Study 12-month Data

Conclusions

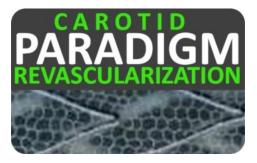
 In the increased-stroke-risk population, including >50% symptomatic patients, CGuard[™] EPS demonstrated effective and durable protection against stroke

CGuard™ EPS Carotid PARADIGM Study 12-month Data

Conclusions

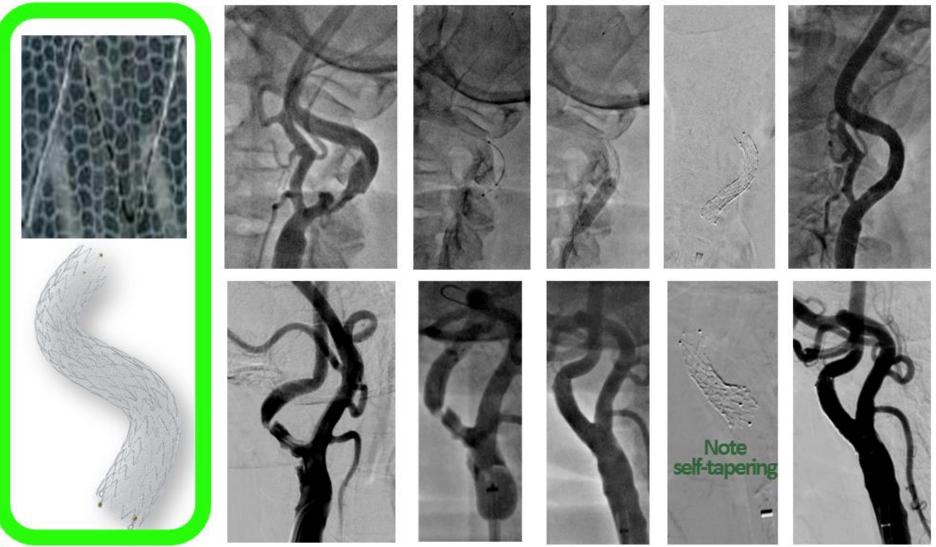
 In the increased-stroke-risk population, including >50% symptomatic patients, CGuard[™] EPS demonstrated effective and durable protection against stroke in absence of any device-related adverse events by 12 months

CGuard™ EPS Carotid PARADIGM Study 12-month Data


Conclusions

 In the increased-stroke-risk population, including >50% symptomatic patients, CGuard[™] EPS demonstrated effective and durable protection against stroke in absence of any device-related adverse events by 12 months

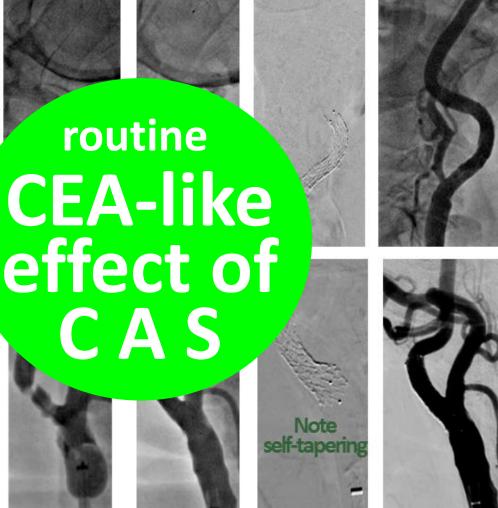
• 12-month Duplex Ultrasound data indicate normal device healing and ECA patency


With this novel technology,

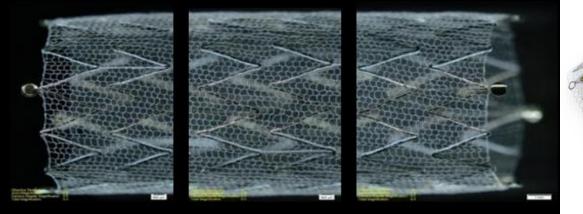
The ENDOVASCULAR route of carotid stenosis management in PRIMARY and SECONDARY Stroke Prevention is

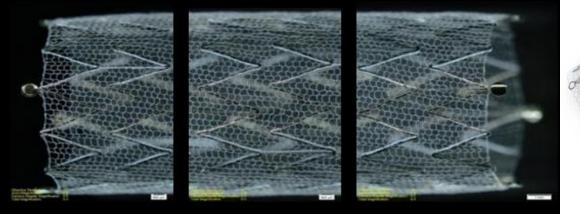
- Viable V
- Safe and effective V
- Applicable to routine practice of CAS ${f V}$
- Applicable to >90% of all-comer patients ${f V}$
- Durable in absence of device-related issues V

Endovascular Solution for All-Comers



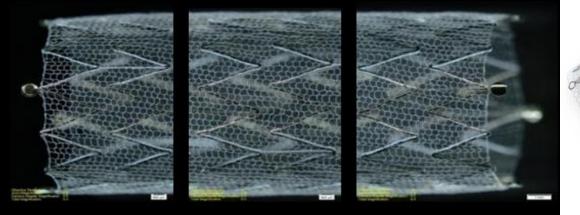
Endovascular Reconstruction of the Carotid Bifurcation Prevention of embolism, Optimal radial force, Conformability


Endovascular Solution for All-Comers


Endovascular Reconstruction of the Carotid Bifurcation Prevention of embolism, Optimal radial force, Conformability

This concept has been desired. And it works.

This is the future v of Carotid Artery Stenting



This concept has been desired. And it works.

This is the future of Carotid Artery Stepting

This concept has been desired. And it works.

This is the future of Carotid Artery Scularization? revascularization

Carotid Artery Revascularization for Stroke Prevention: A New Era

Journal of Endovascular Therapy 1–11 © The Author(s) 2016 Reprints and permissions: sagepub.com/journalsPermissions.nav DOI: 10.1177/1526602816671263 www.jevt.org SAGE

Piotr Musialek, MD, DPhil¹, and Silke Hopf-Jensen, MD²

Keywords

atherosclerosis, carotid artery stenosis, carotid artery stent, double-layered stent, embolic prevention stent, MicroNetcovered stent, mesh-covered stent, stroke

Carotid Artery Stenosis

"Significant" atherosclerotic carotid artery disease [usually, though not always rightly¹ understood as \geq 50% diameter reduction at the carotid bifurcation and/or in the proximal internal carotid artery (ICA)] is present in 2% to 8% of the general population, making it a relatively common pathology.² Its prevalence is similar to that of nonvalvular atrial fibrillation (AF), and similar to AF, it increases with age.^{2,3} Carotid stenosis (CS) is notably more prevalent in patients with diabetes, coronary artery disease, and peripheral artery disease.^{4,5}

Atherosclerotic carotid artery disease is associated with stroke risk through plaque rupture or erosion and consequent thrombus formation, and the stroke mechanism is predomiproportion of these patients are already on antiplatelet and maximized statin treatment prior to the CS-associated stroke events,^{11,14,15} consistent with the fact that medical therapy reduces but does not abolish the CS stroke risk.

CS and Stroke Risk

Recently, a series of influential communications have been addressed to the medical community with the message of a currently "low" (< $1.0\%^{10,16}$ or ~ $0.5\%^{17}$) yearly incidence of stroke in relation to asymptomatic CS on medical management.^{10,16,17} This is in contrast to contemporary data from vascular clinics that show a yearly stroke rate of ~2.0%to 2.5% in real-life cohorts including OMT patients.^{15,18} This apparent difference in stroke risk between the contemporary paper