

Carotid artery revascularization using second generation stents versus surgery: A meta-analysis of clinical outcomes

A. MAZUREK, K. MALINOWSKI, K ROSENFIELD, G. DEDONATO, F. SETACCI, C. WISSGOTT, F. SPEZIALE, A. KARPENKO, W. KUCZMIK, DC. METZGER, M. AMOR, I. PETROV, A. SIDDIQUI, P. PIENIAZEK, A. CREMONESI, E. STABILE, J. SCHOFER, A. SCHMIDT, P. MUSIALEK / CARMEN COLLABORATORS

Jagiellonian University Dept. Cardiac & Vascular Diseases at John Paul II Hospital in Krakow; KCRI Dept. Statistics, Krakow, Poland; and CARMEN Collaboration Centers

Background

Individual studies suggest that the use of second generation carotid stents (SGS; mesh-covered) may be associated with clinical outcomes that are similar (or superior) to carotid endarterectomy (CEA). Large-scale comparison is lacking.

Methods

PubMed was systematically searched for carotid stenting studies using First-Generation (single-layer) carotid stents and Second-Generation (mesh-covered) stents – SGS. Using the meta-analytical tool, SGS outcomes were compared to surgery in randomized trials (**RCTs**) involving CEA: **SAPPHIRE**, EVA 3S, SPACE-1, ICSS, CREST, ACST-1, ACT-1, Manhaim, **SPACE-2,** and to the CEA in contemporary clinical practice – Vascular Quality Initiative (VQI) database (PRISMA

Disclosures: PM has served as an Advisory Board member/Consultant for Abbott Inspire MD and Medtronic, and he is a Proctor for Inspire MD and Medtronic

n= 14

n= 6

n= 98

n= 14

 CGUARD MicroNET Stent and RoadSaver/ Casper *reduce* 30-day stroke compared to **RCT/VQI CEA**

- 12-mo ipsilateral Stroke is *reduced* with **RoadSaver and CGUARD**
- Casper/RoadSaver and Gore Stent increase 12 o -mo restenosis vs. CEA, G wheras restenosis is *reduced* with the **CGUARD MicroNET stent**

CGuard MicroN

CARMEN: CArotid Revascularization systematic review and Meta - aNalysis

Principal findings in 169,154 meta-analyzed patients

30-day Death/Stroke/MI

Study	Patients Events	Weight	Risk Ratio [95% CI]
SGS	2531 44	100%	0.32 [0.14-0.50]
Casper/RoadSaver	585 10	23.1%	0.33 [0.12-0.54]
Gore Mesh Stent	311 15	12.3%	1.19 [0.94–1.45]
CGuard MicroNET Stent	1635 19	64.6%	0.27 [0.10-0.44]

Heterogeneity: I^2 =81%, τ^2 =0.0003, p<0.01

Study	Patients Events	Weight	Risk Ratio [95% CI]
SGS	2531 44	100%	0.53 [0.41-0.65]
Casper/RoadSaver	585 10	23.1%	0.54 [0.38-0.70]
Gore Mesh Stent	311 15	12.3%	1.98 [1.76-2.20]
CGuard MicroNET Stent	1635 19	64.6%	0.44 [0.33-0.55]

Heterogeneity: I²=76%, τ²=0.0001, p<0.01

Second-generation vs. First-generation stents comparisons

12-month Ipsilateral Stroke

Study	Patients Events	Weight	Risk Ratio [95% CI]	
SGS	1191 15	100%	0.20 [0.02-0.39]	-
Casper/RoadSaver	348 3	29.2%	0.07 [0.00-0.27]	-
Gore Mesh Stent	290 9	24.4%	0.88 [0.64-1.13]	
CGuard MicroNET Stent H	553 3 eterogene	46.4% ity: l ² =869	0.11 [0.00-0.28] %, т ² =0.0002, p<0.01	- 0

Study	Patients Events	Weight	Risk Ratio [95% CI]	
SGS	1191 42	100%	0.85 [0.60-1.10]	
Casper/RoadSaver	348 26	29.2%	1.80 [1.53-2.08]	
Gore Mesh Stent	290 14	24.4%	1.22 [0.95–1.48]	
CGuard MicroNET Stent	553 2	46.4%	0.09 [0.00-0.26]	
Н	eterogene	ity: I ² =889	%, τ ² =0.0003, p<0.01	ا C

12-month Ipsilateral Stroke/Restenosis

Study	Patients Events	Weight	Risk Ratio [95% CI]
SGS	1191 57	100%	0.63 [0.32-0.93]
Casper/RoadSaver	348 29	29.2%	0.97 [0.66-1.27]
Gore Mesh Stent	290 23	24.4%	0.97 [0.66-1.28]
CGuard MicroNET Stent	553 5	46.4%	0.09 [0.00-0.31]
Н	eterogene	ity: I ² =929	%, τ ² =0.0012, p<0.01

Risk Ratio [95% CI] 2531 0.32 [0.17-0.46] 100% 0.33 [0.14-0.51]

30-day Death/Stroke/MI

1.17 [0.94-1.41] 0.26 [0.12-0.40] Heterogeneity: $l^2 = 87\%$, $\tau^2 = 0.0004$, p<0.01

	Patients Events	Weight	Risk Ratio [95% CI]
	2531 44	100%	0.31 [0.14-0.48]
Saver	585 10	23.1%	0.32 [0.11-0.52]
ent	311 15	12.3%	1.15 [0.91–1.40]
NET Stent	1635 19	64.6%	0.26 [0.10-0.42]
Н	eterogene	ity: I ² =84%	%, τ ² =0.0003, p<0.01

	Patients Events	Weight	Risk Ratio [95% CI]
	2531 44	100%	0.41 [0.23-0.59]
aver	585 10	23.1%	0.42 [0.21-0.63]
ent	311 15	12.3%	1.53 [1.28–1.79]
NET Stent	1635 19	64.6%	0.34 [0.17-0.51]
Н	leteroaene	eity: $I^2 = 73^\circ$	%, τ ² =0.0002, p<0.01

	Patients Events	Weight	Risk Ratio [95% CI]
	2531 44	100%	0.41 [0.23-0.59]
aver	585 10	23.1%	0.42 [0.21-0.63]
nt	311 15	12.3%	1.53 [1.28–1.79]
NET Stent	1635 19	64.6%	0.34 [0.17-0.51]
Н	leterogene	ity: I ² =739	%, τ ² =0.0002, p<0.01

CEA (VQI)

_____/

better than worse than

CEA (RCTs)

0 0.5 1 1.5 2.5

etter than worse tha

CEA (RCTs)

CEA (VQI)

CEA (VQI)

85

____//___

2.8 3.3

Heterogeneity: $l^2 = 59\%$, $\tau^2 < 0.0001$. p<0.01

29.2%

24.4%

46.4%

12-month Ipsilateral Stroke

0.69 [0.54-0.85]

3.07 [2.85-3.29]

0.38 [0.23-0.53]

Patients Weight Risk Ratio [95% CI] Events

553

Heterogeneity: I^2 =58%, τ^2 <0.0001, p=0.08

12-month Restenosis

Heterogeneity: I²=84%, τ²=0.0002, p<0.01

Study	Patients Events	Weight	Risk Ratio [95% CI]
SGS	1191 42	100%	1.45 [1.25–1.65]
Casper/RoadSaver	348 26	29.2%	3.08 [2.84-3.32]
Gore Mesh Stent	290 14	24.4%	2.08 [1.85-2.31]
CGuard MicroNET Stent	553 2	46.4%	0.14 [0.04-0.24]

Heterogeneity: $I^2 = 93\%$, $\tau^2 = 0.0002$, p<0.01

NO "class" effect of SGS !

SGS vs. CEA

Study

SGS

CGuard MicroNET Stent

- PET MicroNET-Cover outside CGuard

CEA = Carotid Endarterectomy (surgery)

Meta-Analyzed Populations Clinical Characteristics

RCTs CEA	VQI CEA	SGS	p RCTs-CEA vs SGS	p VQI-CEA vs SGS
9	2	14	-	-
5,335*	95,776*	2,152*	-	-
69.4 (1.5)	71	71.9 (2.5)	0.03	-
69%	61%	73%	0.71	0.29
37%	23%	41%	0.75	0.83
29%	35%	32%	0.44	0.99
41%	27%	47%	0.75	0.35
3%	nd	3%	1.0	-
7%	nd	16%	0.56	-
	9 5,335* 69.4 (1.5) 69% 37% 29% 41% 3%	925,335*95,776*69.4 (1.5)7169%61%37%23%29%35%41%27%3%nd	92145,335*95,776*2,152*69.4 (1.5)7171.9 (2.5)69%61%73%37%23%41%29%35%32%41%27%47%3%nd3%	RCISCEAVQICEASGSVs SGS9214-5,335*95,776*2,152*-69.4 (1.5)7171.9 (2.5)0.0369%61%73%0.7137%23%41%0.7529%35%32%0.4441%27%47%0.753%nd3%1.0

CRF

2021

Results

30-day Death/Stroke/MI (DSM) was 3.76% for CEA and 1.34% for SGS taken as a group (p<0.001). Both Casper/Roadsaver (CR) and CGuard (CG) showed a significant reduction in DSM by an absolute -2.45% and -2.70% (p=0.002 and p<0.001) whereas the Gore stent (GS) showed a non-significant increase in the event rate (+1.11%, p=0.48). For pooled SGS's, there was no difference between SGS and CEA in 12-month combined ipsilateral stroke (IS) and restenosis (R) (4.1% vs. 4.8%; p=0.85). However, there was a significant difference in the combined 12-month endpoint (IS+R) for the individual SGS (increase to 7.9% with CR, reduction to 0.6% with CG, increase to 6.6% with GS), translating into their different effect against the CEA 12-mo IS+R (CEA - 4.1%).

Conclusions

- SGS reduce 30-day stroke rate against CEA; an effect driven by MicroNET-covered CGUARD and by the RoadSaver/Casper stent.
- 12-month adverse outcomes are *reduced* with CGUARD, *increased* with RoadSaver/Casper, and are not significantly affected by the Gore Stent.
- Findings from this meta-analysis may impact clinical decision-making in carotid revascularization.

References 1. Mazurek A et al. 2021 (at review); 2. Dakour-Aridi H et al. *Ann Vasc Surg.* 2020;65:1-9; 3. Columbo JA, et al. *J Vasc Surg.* 2019;69:104-109; 4. Karpenko A. et al. *J Am Coll Cardiol Intv*. 2021 (Nov 8);14: 2377-2387.