

Feasibility, Safety, and Efficacy of MicroNet-covered stent in consecutive increased-risk iliac stenotic lesions to reconstruct anatomy and guard effective flow: A multi-center, multi-specialty study

FLOWGUARD-ILIAC, NCT04461717

Piotr Paluszek on behalf of FLOWGUARD-ILIAC Investigators

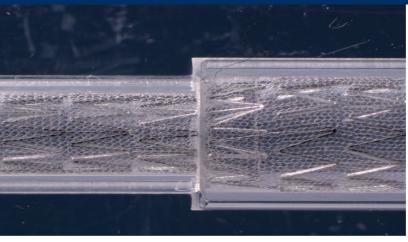
Dept. of Vascular Surgery and Endovascular Interventions
John Paul II Hospital, Krakow

Disclosure

Speaker name:
Piotr Paluszek
I have the following potential conflicts of interest to report:
☐ Consulting
☐ Employment in industry
☐ Stockholder of a healthcare company
☐ Owner of a healthcare company
☐ Other(s)

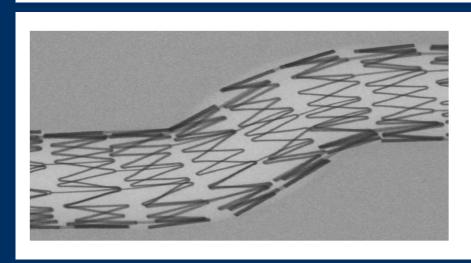
☑ I do not have any potential conflict of interest

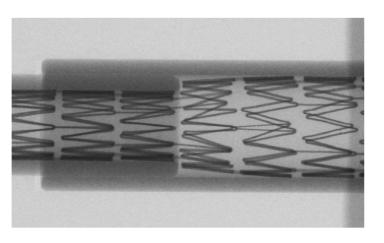
Background


In increased-risk lesions, conventional (single-layer) stents used in iliac artery revascularization have important limitations:

 highly-calcific stenoses (risk of perforation limits stent optimization whereas suboptimal expansion is a risk factor for instent restenosis)

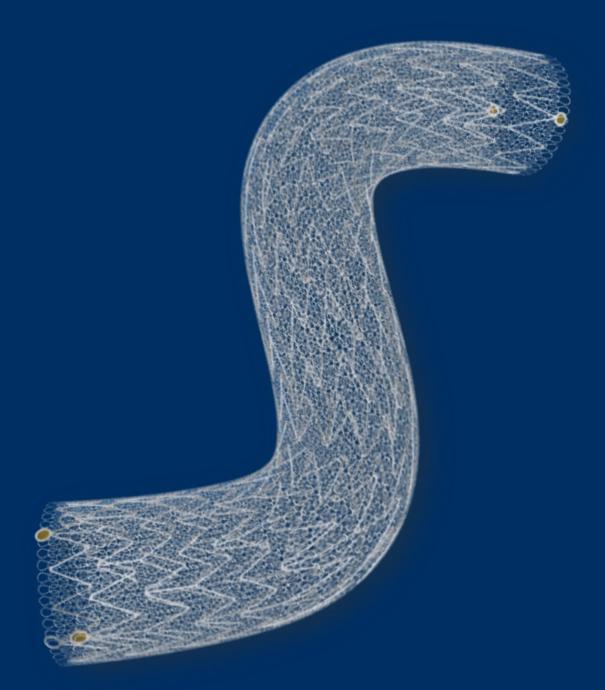
• thrombotic lesions (where the "cheese-grater" effect may lead to distal embolism)


Unique combination of Radial force, High conformability, + MicroNET coverage: Enabling Endovascular Reconstruction



Stent adaption in a curved and in a straight vessel model with an inner diameter step from 7 to 5 mm for InspireMD CGUARD

(macrophotography)



Stent adaption in a curved and in a straight vessel model with an inner diameter step from 7 to 5 mm for InspireMD CGUARD

(micro CT)

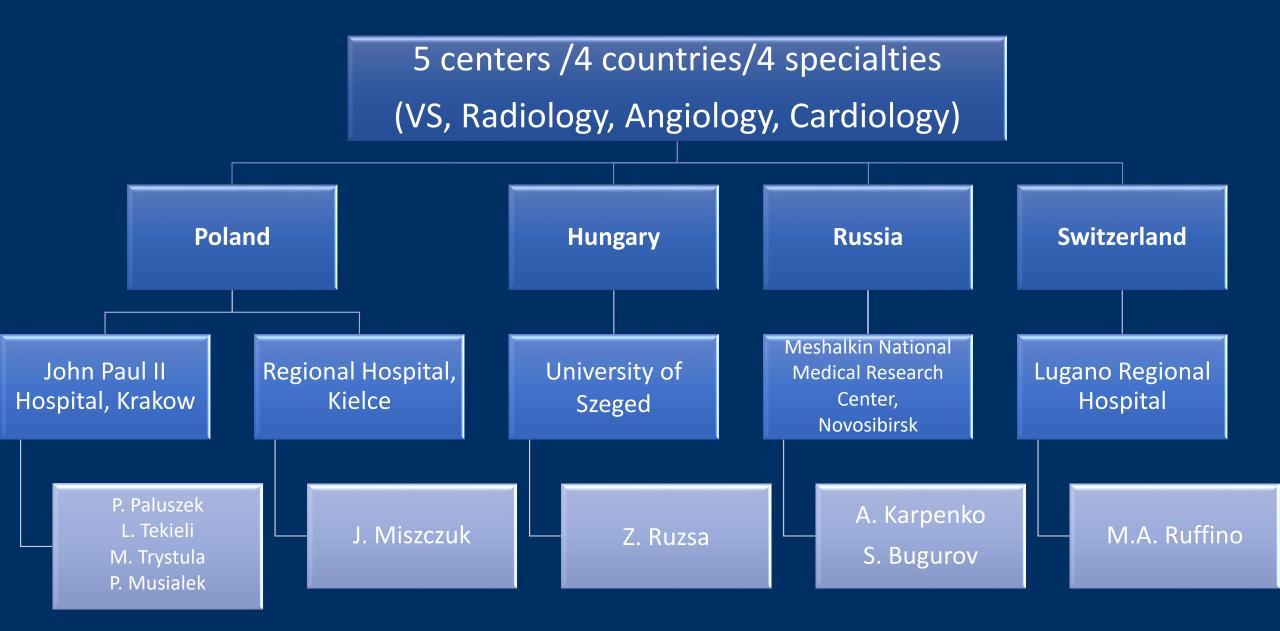
MicroNET-covered stent

- has the ability to sequestrate the atherothrombotic material
- in highly calcific lesions, due to a degree of sealing properties, enables high-balloon diameter, high-pressure optimization of the angiographic result and may minimize residual stenosis
- hence its potential to improve the outcomes

Aim of the FLOWGUARD-ILIAC study NCT04461717

Investigator-initiated, industry-independent study to test, in a multi-center, multi-specialty (vascular surgery, radiology, angiology, cardiology) setting, the use of MicroNET-covered stent to treat increased-risk iliac lesions, in consecutive patients undergoing percutaneous iliac artery revascularization (claudicants or iliac-related limb-threatening ischaemia).

Methods:


1. "Increased-risk lesion" by CT angio/ catheter angiography

Consensus by the operator intending to perform the case + 2 other operators

2. Internal iliac artery coverage to be avoided.

3. Active recruitment: 24 months (COVID-19 break).

FLOWGUARD-ILIAC Investigators

Patients

n = 65

41 Men (63.1%)

24 Women (36.9%)

Age: 53-83, mean age 68.6 years

Claudicants – 59 (90.8%)
Critical limb ischemia – 6 (9.2%)

Coronary artery disease	41 (63.1 %)
Congestive Heart Failure	14 (21.5%)
Previous stroke	14 (21.5%)
Hypertension	63 (97%)
Dyslipidaemia	65 (100%)
Diabetes/glucose intolerance	33 (50.8%)
Carotid Artery Disease	32 (49.2%)
Previous PCI/CABG	25 (38.5%)
Previous CAS/CEA	22 (33.8%)
Smoking	Current – 21 (32.3%) Past – 37 (57%) None – 7 (10.7%)

The iliacs treated

65 patients 77 arteries 80 stents

Side:

- Left 20 patients
- Right 38 patients
- Both 7 patients

Artery:

- LCIA 20 (26.0%)
- RCIA 24 (31.2%)
- LEIA 10 (13.0%)
- REIA 23 (29.8%)

Lesion characteristics n=77

- Highly-calcific 34 (44.1%)
- Thrombotic (incl. thrombotic dissection) 35 (45.5%)
- Other high-risk 8 (10.4%)

Mean stenosis severity before the procedure 82.7 ± 9.3% (angiolab analysis)

Complex CTO recanalization – 4 arteries (5.2 %)

Stents used

65 patients 77 arteries 80 stents

Nominal diameter 7 – 10 mm mean 9.4 mm

Length
20 – 60 mm
mean 36.3 mm

D I	7 mm	11
A M	8mm	14
E T	9 mm	21
E R	10mm	34
L	20mm	9
E N	30mm	25
G T H	40mm	36
S	60mm	10

No stents other than the study device were used.

Procedure

Access		
Femoral	50	
Femoral bilateral	5	
Radial	8	
Brachial	2	

Predilatation

34 arteries (44.1%)

Balloon diameters

 $3.5 - 8 \, \text{mm}$

average 5.3 mm

Pressures

6 – 24 atm

average 14.8 atm

Postdilatation

77 arteries (100%)

Balloon diameters

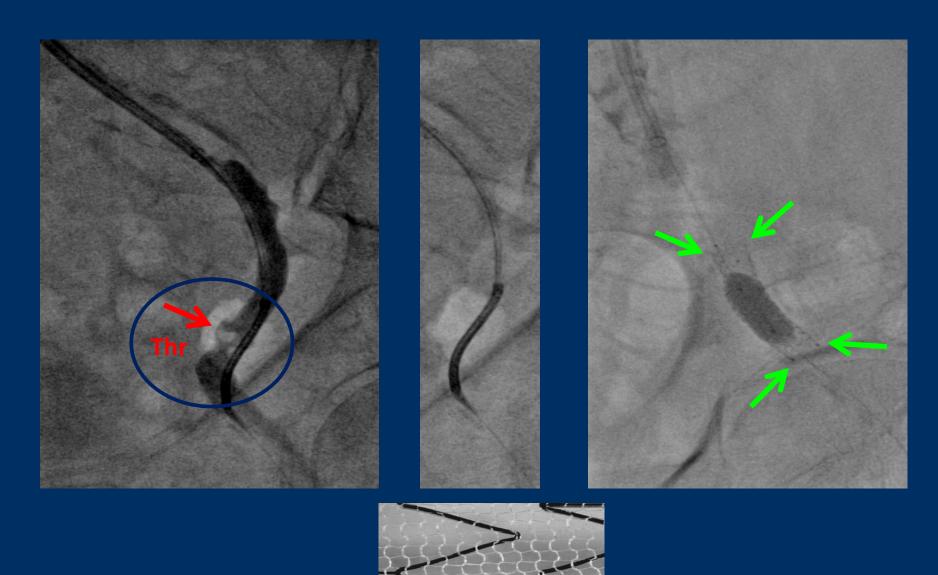
6 - 10 mm

average 7.6 mm

Pressures

8 - 24 atm

average 15.4 atm

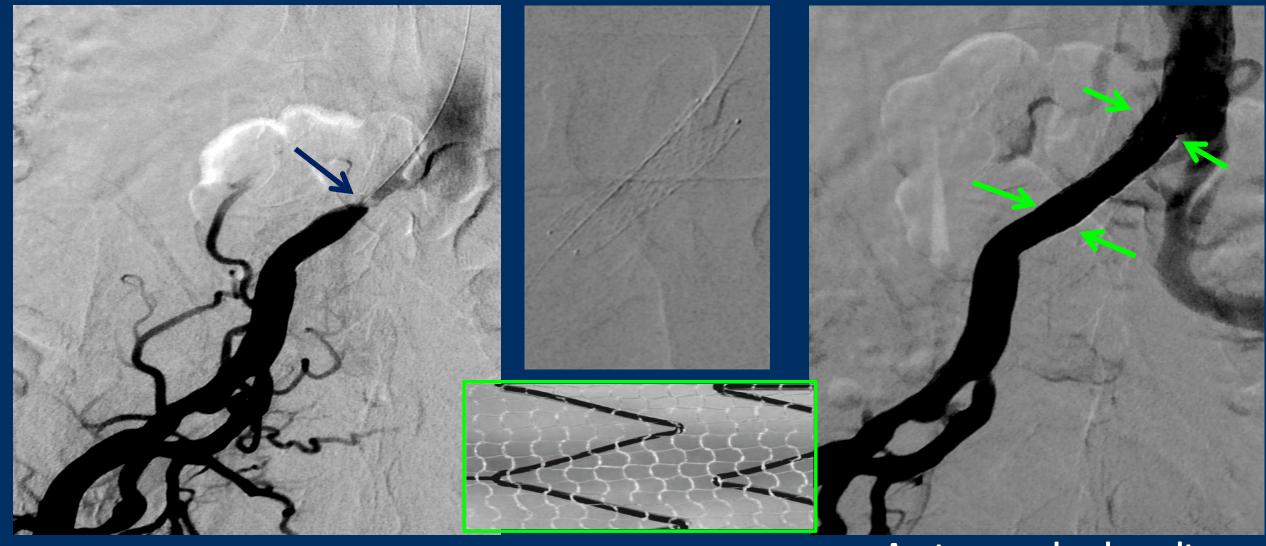

Immediate results

- Procedure performed with intended device 100%
- Technical success (residual stenosis below 30%) 100%
- Clinical success (technical success + no MACE) 100%
- Residual stenosis: 8.0 ± 6.3 %

• Complications:

- Death/MI/Stroke/Transfusion-requiring bleeding: 0
- Perforation: 0
- Embolism: 0
- Groin hematoma: 2 (3.1%)

Thrombus-containing/high-embolic risk lesions in <u>iliacs</u>


Thrombus-containing/high-embolic risk lesions in iliacs

Optimal procedural result

Optimal 6mo follow-up

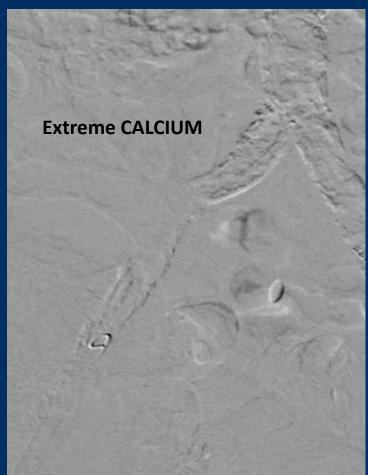
Thrombus-containing/high-embolic risk lesions in iliacs

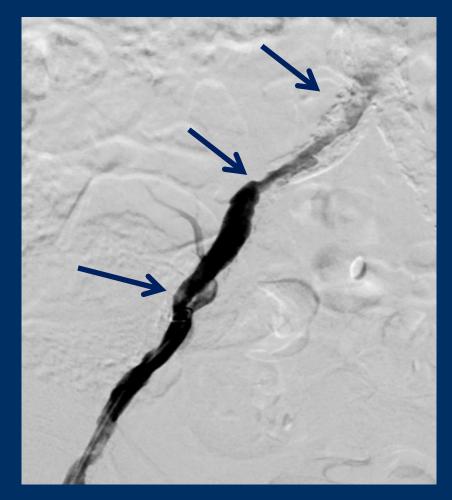
Acute procedural result

Thrombus-containing/high-embolic risk lesions in iliacs

MicroNetcovered stent

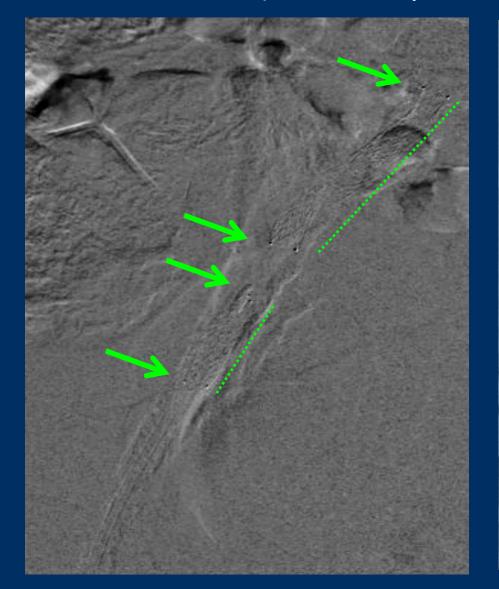
Optimal anatomic result @follow-up

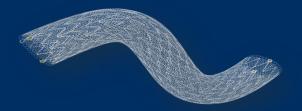




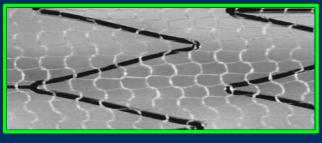
(V) Higly calcific disease

(note: adequate radial force need)



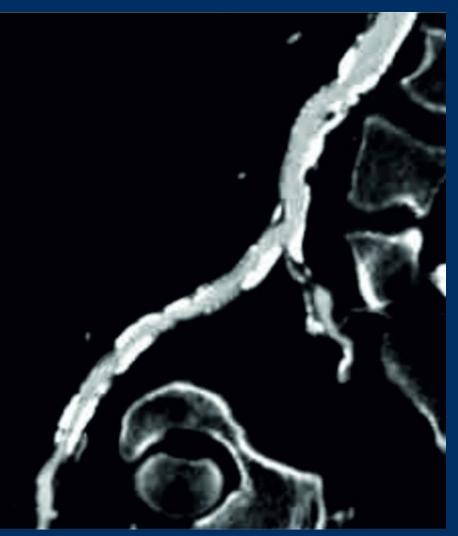

(V) Higly calcific disease

(note adequate radial force need)



MicroNet-covered stent

Acute Procedural Result



MicroNet-covered stent

(V) Higly calcific disease

(note: adequate radial force provided)

Optimal anatomic result @ 6mo

6 mo OUTCOMES (Primary endpoint = CTA)

65 patients (100%)

Imaging follow-up Performed (per patient)		
CTA	58 (89.2 %)	
Catheter Angiography	3 (4.6 %)	
Doppler-Duplex ultrasound (renal failure progr.)	4 (6.2 %)	

Clinical (per patient)

Clinical improvement (claudication distance increase and/or limb saved) – 100%

Death/MI/Stroke – 1 (MI)

Amputation – 0

Restenosis rate (per lesion treated)

In-stent 0 (0.0%)

In-segment 1 (1.3%)

(progression of edge stenosis treated by adding another CGuard stent)

Conclusions

In increased-risk iliac artery lesions requiring revascularization, the MicroNET-covered stent:

• is safe and effective

 allows to optimize the angiographic result in absence of embolism or other complications

achieved 100% primary patency in absence of ISR by 6 mo