

Acute Stroke of CArotid Artery BiFurcation Origin Treated With Use of the MicronEt-covered CGUARD Stent: SAFEGUARD-STROKE

Lukasz Tekieli

for SAFEGUARD-STROKE Investigators NCT05195658

Jagiellonian University Dept. of Cardiac & Vascular Diseases and Dept. of Interventional Cardiology John Paul II Hospital, Kraków, Poland

Disclosure

Speaker name: Lukasz Tekieli

I do not have any potential conflict of interest

SAFEGUARD-STROKE: Multi-centric, multi-specialty study

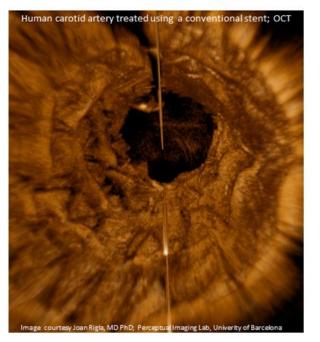
Lukasz Tekieli¹⁻³, Andrey Afanasiev⁴, Maciej Mazgaj⁵, Vladimir Borodetsky⁶, Kolja Sievert⁷, Magdalena Knapik^{1,2,8}, Audrius Širvinskas³, Adam Mazurek^{1,2}, Karolina Dzierwa⁹, Thomas Sanczuk¹⁰, Valerija Mosenko¹¹, Mariusz Trystula¹², Piotr Paluszek¹², Justyna Stefaniak¹³, Piotr Pieniazek^{2,3,12}, Inga Slautaitė¹⁴, Artūras Mackevičius¹⁵, Michael Teitcher¹⁶, Horst Sievert⁷, Iris Q Grunwald^{17,18}, Piotr Musialek¹⁻³

¹John Paul II Hospital in Krakow Thrombectomy-Capable Stroke Centre, Krakow, Poland ²Jagiellonian University Department of Cardiac and Vascular Diseases, John Paul II Hospital Krakow, Poland ³Jagiellonian University Department of Interventional Cardiology, John Paul II Hospital Krakow, Poland ⁴Department of Interventional Radiology, Republican Vilnius University Hospital, Vilnius, Lithuania ⁵Department of Diagnostic and Interventional Radiology, Stephan Cardinal Wyszynski Regional Hospital, Lublin, Poland ⁶Department of Interventional Radiology, Share Zedek Medical Center and Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel ⁷CardioVascular Center Frankfurt (CVC), Sankt Katharinen Hospital, Frankfurt, Germany ⁸Department of Radiology, Podhalanski Multispecialty Hospital, Nowy Targ, Poland ⁹Cardiovascular Imaging Laboratory John Paul II Hospital, Krakow, Poland ¹⁰Department of Neurology, Stephan Cardinal Wyszynski Regional Hospital, Lublin, Poland ¹¹Santaros Klinikos, Vilnius University Hospital, Vilnius, Lithuania ¹² Department of Vascular and Endovascular Surgery, John Paul II Hospital, Krakow, Poland ¹³Department of Bioinformatics and Telemedicine, Jagiellonian University Medical College, Krakow, Poland ¹⁴Department of Neurology, Republican Vilnius University Hospital, Vilnius, Lithuania ¹⁵Department of Vascular Surgery, Republican Vilnius University Hospital, Vilnius, Lithuania ¹⁶Department of Neurology, Share Zedek Medical Center and Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel ¹⁷Division of Imaging Science and Technology, School of Medicine, University of Dundee, Dundee, Scotland, United Kingdom ¹⁸University of Dundee Chair of Neuroradiology and Department of Radiology, Ninewells Hospital, Dundee, Scotland, United Kingdom

Background

Acute ischaemic stroke of carotid artery bifurcation origin (AIS-CA):

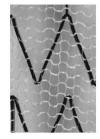
A **REAL** challenge!


- large volume of affected brain tissue
- large thrombus load with poor efficacy of thrombolytic therapy
- inability of surgery to address the intracranial occlusion in tandem lesions, mixed data on emergent CAS
- single-layer carotid stents have significant limitations (inability to insulate the lesion; optimization vs emboli risk)

Background


A novel **MicroNET-covered stent system** (CGuard) has level-1 evidence* to **profoundly reduce procedural cerebral embolism** in elective CAS, but has not yet been systematically evaluated in carotid artery bifurcation origin stroke.

The CREST Study stent


MicroNet-Covered Stent

Human 3D OCT, symptomatic lesion

OCT Images P Musialek, G deDonato. Carotid Artery Revascularization Using the Endovascular Route In: Peripheral Arterial Interventions – A Practical Guide 2023 (in press)

*Karpenko et al. Randomized Controlled Trial of Conventional Versus MicroNet-Covered Stent in Carotid Artery Revascularization JACC Cardiovasc Interv. 2021;14:2377-2387.

To evaluate clinical and imaging outcomes using the Micronet-covered stent in consecutive patients with carotid artery bifurcation origin stroke eligible for emergency recanalization

Methods

DESIGN

- Multi-centric
- Multi-specialty
- Consecutive patients
- Micro-NET-covered stent; other management as per centre routine

OUTCOMES

- Device and procedure success (technical, clinical)
- Discharge stent patency, patency at 3 months
- Clinical (mRS) and DUS outcomes at 3 months

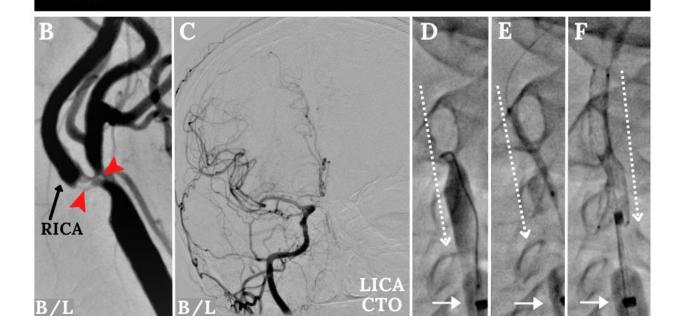
Clinical characteristics, n=75

Age, years; range	<mark>67</mark> [61-74]; 40 - 89
Gender, woman	21 (28.0)
ASPECTS on admission; range	<mark>9</mark> [9-10]; <mark>6 - 10</mark>
NIHSS on admission	<mark>14</mark> [12-19]
mRS before admission	0 [0-1]
Time from symptom onset to presentation in Stroke Centre, h	3 [2-6]
Type of stroke (mechanism) Hemodynamic+Embolic [*] Hemodynamic [#] Embolic ^{**}	20 (26.7) 37 (49.3) 18 (24.0)
Type of stroke (clinical) Hyperacute Crescendo TIA/stroke-in-evolution Stuttering/aggravating	65 (86.7) 6 (8.0) 4 (5.3)
Side, right	38 (50.7)
ICA lesion type Atherothrombus Dissection Atherothrombus + dissection	69 (<mark>92.0</mark>) 5 (6.7) 1 (1.3)

Values are given as median[Q1,Q3] or n (%) as applicable *flow limiting #evidence of cerebral vessel occlusion on CTA or cQA (embolic carotid-related stroke mechanism was considered applicable in case of a non-flow limiting carotid lesion)

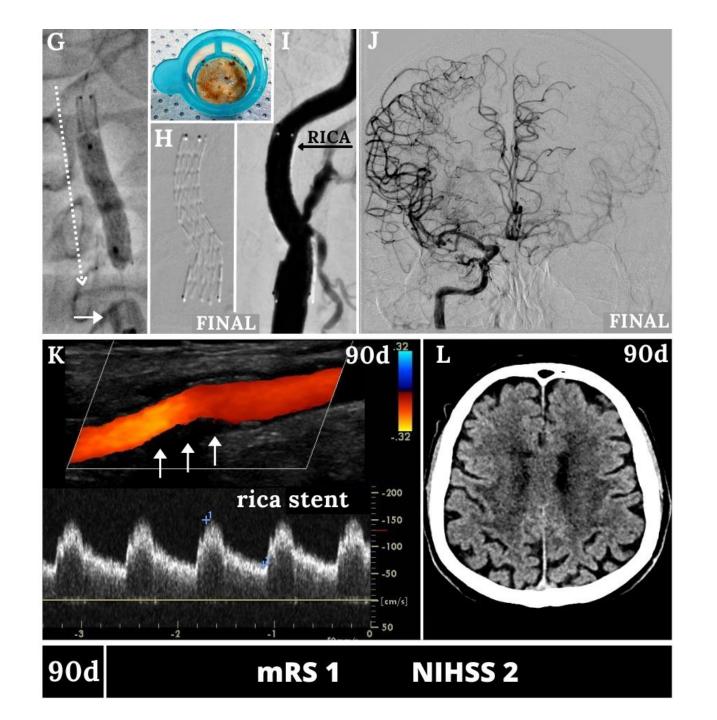
Clinical characteristics, cont'd

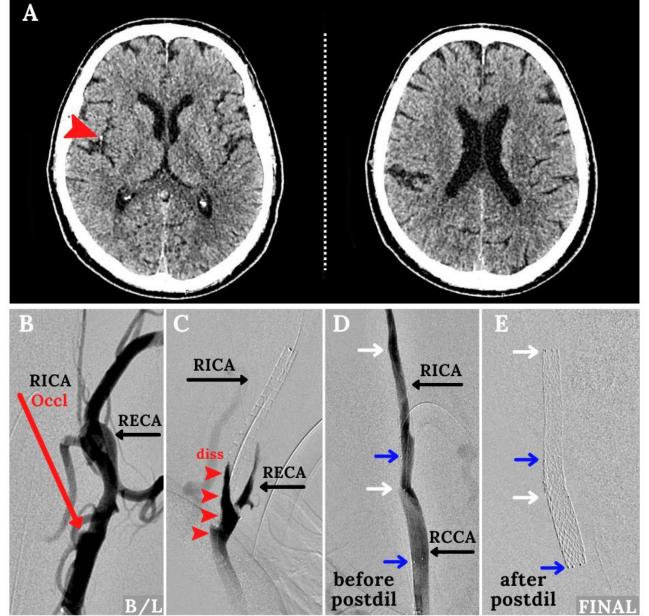
ICA <mark>thrombus</mark> [†]	42 (<mark>56.0</mark>)
ICA heavy calcifications [‡]	24 (<mark>32.0</mark>)
Tandem lesion	38 (<mark>50.1</mark>)
Smoking history No Current Ex-smoker	33 (44.0) 26 (34.7) 16 (21.3)
Diabetes	25 (33.3)
Hypertension	67 (89.3)
Hypercholesterolemia or hypolipidemic therapy prior to stroke	62 (82.7)
Stroke in history TIA in history	7 (9.3) 17 (22.7)
Coronary artery disease	26 (34.4)
Atrial fibrillation	10 (13.3)
Symptomatic PAD	8 (10.7)
History of neck/chest radiotherapy	3 (4.0)

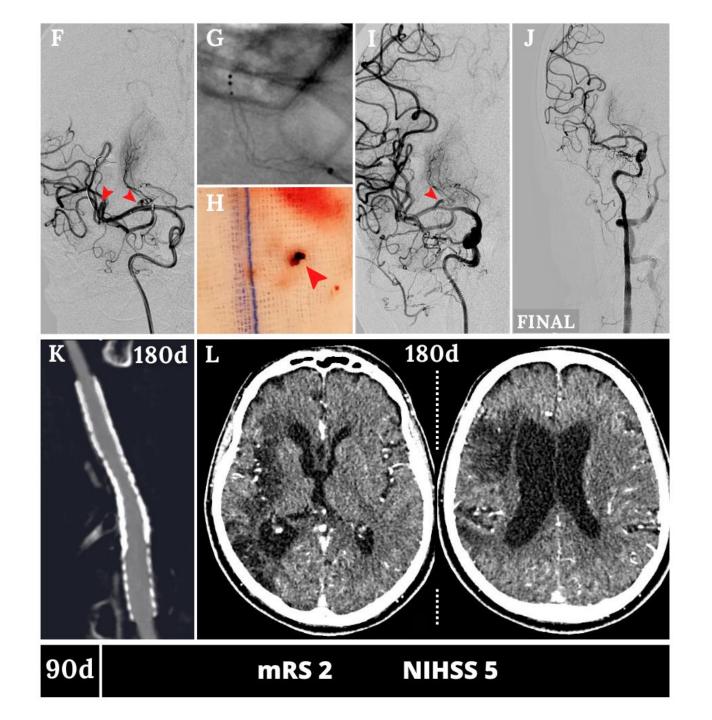

Values are given as median[Q1,Q3] or n (%) as applicable

[†]angiographic thrombus presence

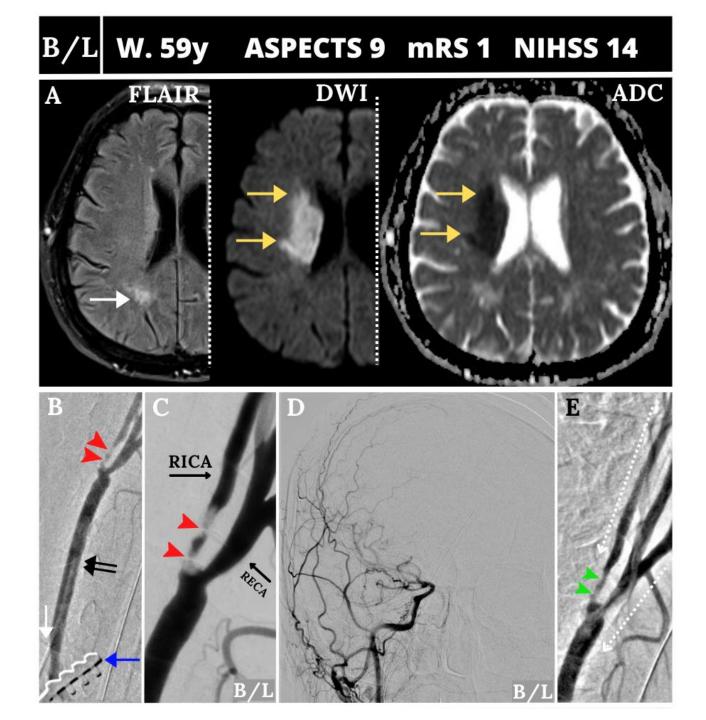
[‡] angiographic evidence of heavy calcifications


Case example #1 Thrombotic, non-tandem

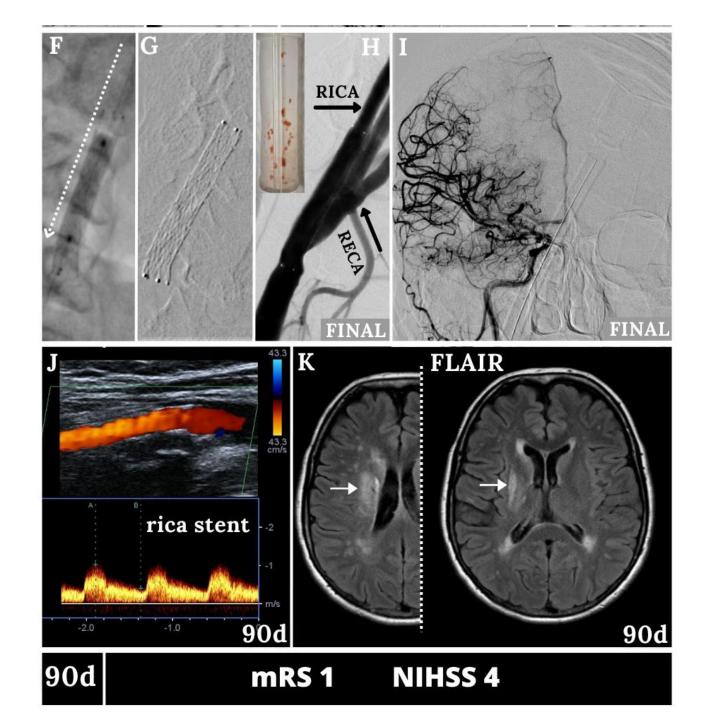

Case example #1 (cont'd)


Case example #2 Dissection/occlusion, tandem Antegrade strategy

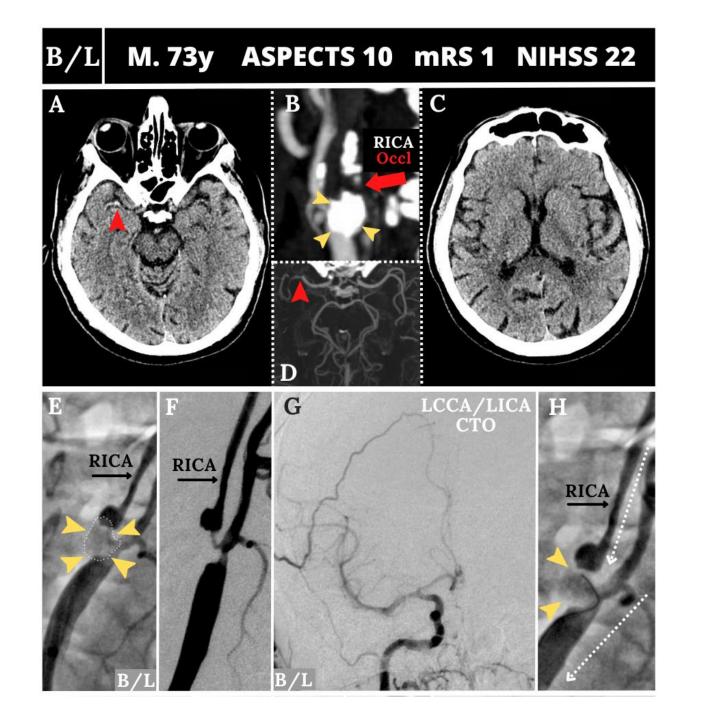
B/L M. 61y ASPECTS 10 mRS 0 NIHSS 19



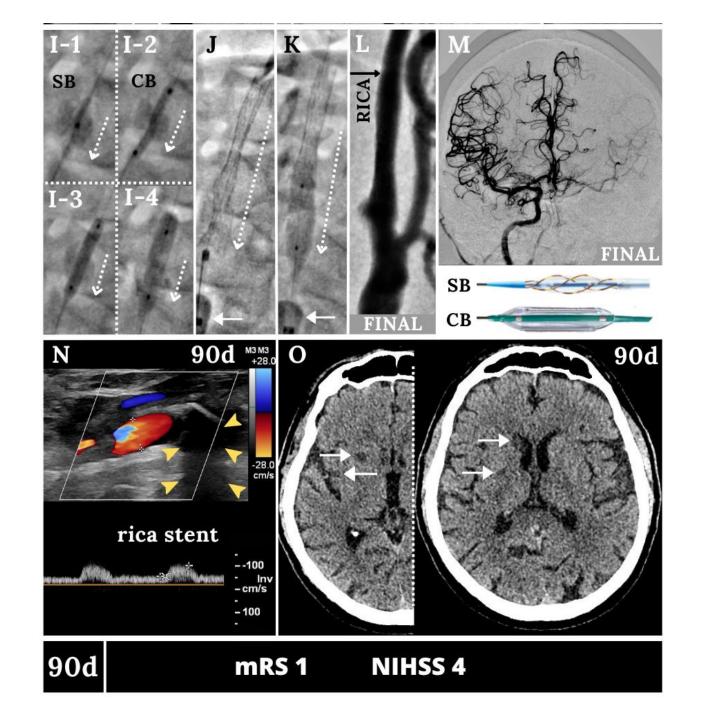
Case example #2 (cont'd)



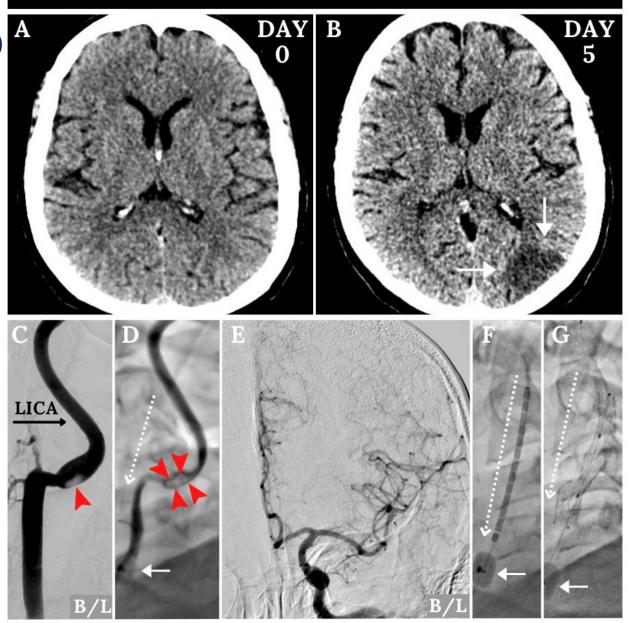
Case example #3 Thrombotic sub-occlusion, No iliac/radial access => TCAR

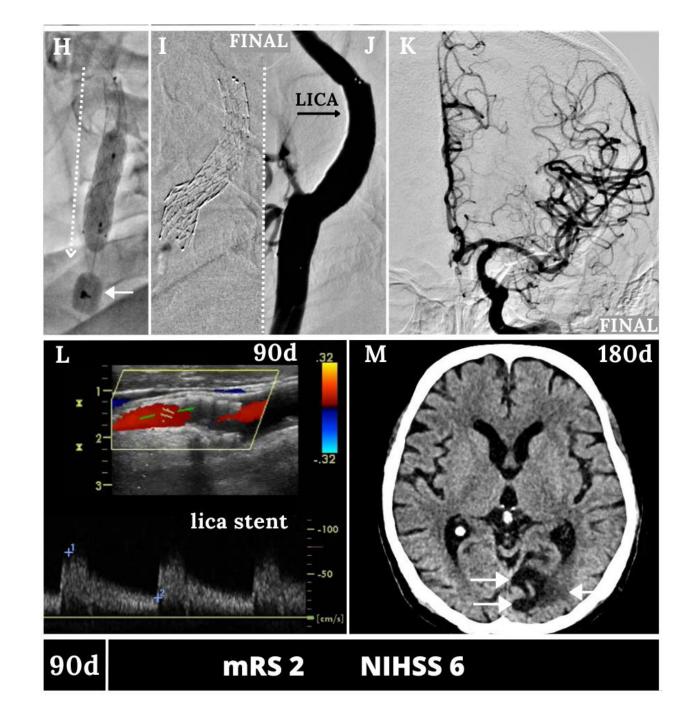


Case example #3 (cont'd)

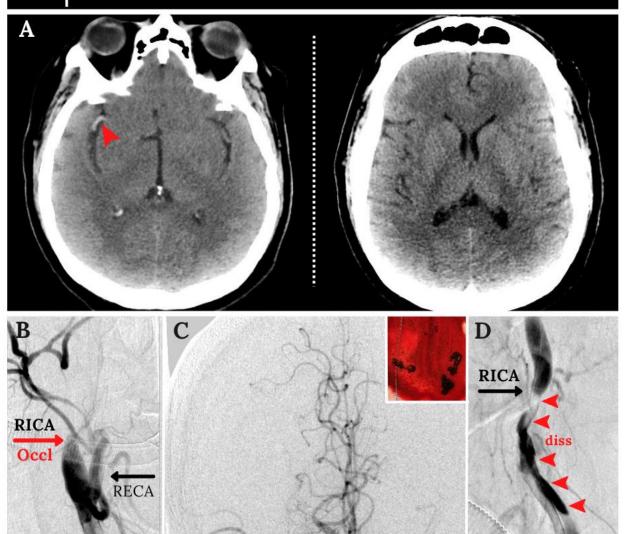


Case example #4 Massive calcium, tandem rt-PA background

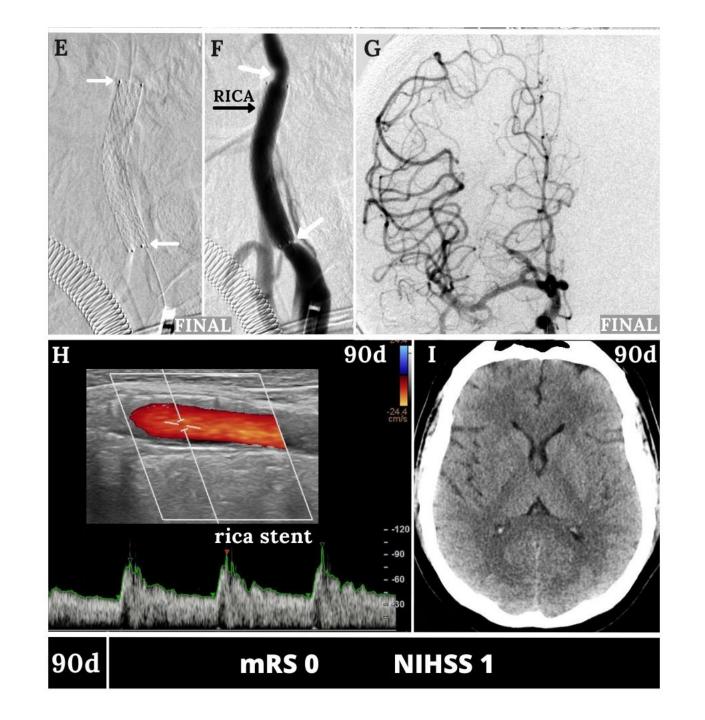

Case example #4 (cont'd)


Case example **#5** Thrombotic, stuttering, non-tandem (initial tandem?)

W. 53y ASPECTS 10→9 mRS 0→2 NIHSS 4→21


Case example #5 (cont'd)

Case example #6 Dissection, tandem, Retrograde strategy


B/L M. 51y ASPECTS 10 mRS 0 NIHSS 14

B/1

Case example #6 (cont'd)

Procedural data (1)

	1
Vascular access (n=75)	
Femoral	67 (<mark>89.3</mark>)
Radial	5 (6.7)
Transcarotid	3 (4.0)
Extra/intracranial thrombectomy [*] (n=75)	
• Extracranial	<mark>23</mark> (30.7)
Aspiration	20 (26.7)
Large-bore ST	3 (4)
 Intracranial 	<mark>36</mark> (48)
Aspiration	21 (28)
Aspiration plus ST	12 (16)
ST	3 (4)

Values are given as n (%) *other than flow reversal

Procedural data (2)

Intracranial Mechanical Thrombectomy	
(n=36, in n=5 > 1 level)	
ICA	8 (22.2)
M1	21 (<mark>58.3</mark>)
M2	12 (33.3)
Number of passages during intracranial MT	2 [1-4]
range	1-9
Extracranial lesion strategy	
Predilation	46 (61.3)
'Direct' stenting	29 (38.7)
Carotid stent strategy in tandem lesions	
Antegrade	11 (28.9)
Retrograde	27 (<mark>71.1</mark>)

Procedural data (3)

Predilation balloon diameter, mm	3.5 [3.0-3.5]
Range	1.0-5.0
Stent size, mm x mm	
6 x 40	2 (2.7)
7 x 30	5 (6.7)
7 x 40	6 (8.0)
8 x 30	10 (13.3)
8 x 40	7 (9.3)
9 x 30	12 (16.0)
9 x 40	17 (22.7)
10 x 30	4 (5.3)
10 x 40	8 (10.7)
10 x 60	4 (5.3)

>1 stent implantation required, n (%)	3 (4.0)
Second stent reason	
dissection	0
thrombus	0
lesion length	3 (4.0)
Final postdilation balloon diameter	5 [5.0-5.5]
Range	4-8
Final postdilation balloon pressure,	
mmHg	<mark>18</mark> [12-20]
Range	10-24

Values are given as median[Q1,Q3] or n (%) as applicable

Procedural data (4)

Final mTICI	
0/1	3 (4.0)
2a	5 (6.7)
2b/c	17 (<mark>22.7</mark>)
3	50 (<mark>66.7</mark>)
Procedure time	70 [49-90]
Range	33-170
Intraprocedural heparin use	75 (100)
Intraprocedural heparin regimen	
Limited to catheter(s) flush drip	6 (8.0)
Additional heparin dose	69 (<mark>92.0</mark>)
<3000 IU	11 (14.7)
3000-5000 IU	21 (28.0)
ACT-adjusted dosing (≥ 250 sec)	37 (<mark>49.3</mark>)

Procedural data (5)

Periprocedural antiplatelet administered	<mark>75 (100.0)</mark>
iv. ASA	7 (9.3)
oral/nasogastric tube ASA	68 (90.7)
IIb/IIIa inhibitor use (ia/iv)	16 (21.3)
ia. bolus only	4 (5.3)
ia. bolus + iv infusion	12 (16.0)
Postprocedural antiplatelets	
One drug	4 (5.3)
Two drugs	71 (<mark>94.7</mark>)
Timing of second antiplatelet agent administration (n=71)	
≤24h	38 (53.5)
>24h	33 (46.5)
If delayed - when given, hours	28 [26-31]
range	24-48
Recommended DAPT (SAPT) duration, months	3 [3-3]
range	1-12

Key in-hospital outocomes

In-hospital (by discharge) outcomes	
Any intracranial hemorrhage	12 (16)
asICH	8 (10.7)
sICH	4 (<mark>5.3</mark>)
In-hospital death	7 (<mark>9.3</mark>)
NIHSS on discharge	4 [2-8]
range	0-23
mRS at discharge	1 [1-3]
range	0-6
Stent patent [#] by discharge	66 (<mark>94.3</mark>)

90-day deaths are provided per enrolled subjects (n=75) #in alive patients unless DUS performed within 24 hours prior to death (n=70)

Key 90-day outocomes

90-day outcomes [†]	n=66
New stroke by 90-days, any ipsilateral contralateral posterior circulation	2 (3) 1 (1.5) 0 1 (1.5)
90-day death (total [*])	9 (<mark>12.0</mark>)
NIHSS at 90 days	3 [2-5]
mRS [‡] at 90 days	1 [1-2]
Stent patent [¥] by 90 days	59 (<mark>92.2</mark>)
DUS PSV/EDV (cm/s) [Q1-Q3]	64/24 [55-84]/[21-30]

⁺in patients alive at 90 days, unless specified otherwise
*8 deaths as stroke consequence (one COVID-19 infection-related death),

‡including deaths

¥in patients alive by 90 days, unless occlusion (0) diagnosed prior to death between discharge and 90 days; (n=64 eligible at 90 days, total 5 occlusions)

Predictors of sICH

Univariate	Mulitvariate
IIb/IIIa inhibitor full dose*	IIb/IIIa inhibitor full dose*
OR 6.4 (1.8-24.5), p<0.001	OR 16.9 (4.8-34.3), p<0.001
T-occlusion	
OR 3.9 (1.9-15.1), p<0.001	
Tandem lesion	
OR 3.4 (1.3-35.9), p=0.010	
IVT	
OR 1.9 (1.1-11.2), p<0.001	
Additional dose of heparin [#]	
OR 1.4 (1.1-20.6), p=0.020	

95% CIs are provided in paretheses

*(ia. bolus + iv. infusion) [#]other than in flush

Predictors of bad clinical outcome (mRS >2) at 90 days

Univariate	Mulitvariate
IIb/IIIa inhibitor full dose*	NIHSS > 20
OR 23.8 (5.3-94.5), p<0.001	OR 14.7 (2.1-78.2), p=0.006
ASPECT < 8	IIb/IIIa inhibitor full dose*
OR 11.2 (3.2-38.9), p<0.001	OR 13.9 (5.1-84.5), p<0.001
NIHSS > 20	ASPECT < 8
OR 8.3 (2.4-32.6), p<0.001	OR 12.8 (2.0-81.6), p=0.007
Tandem lesion	
OR 6.1 (1.8-20.8), p=0.004	
Postdilatation balloon < 5mm	
OR 4.6 (1.2-17.6), p=0.020	
Immediate DAPT	
OR 0.77 (0.41-0.92), p=0.006	
Occlusion balloon catheter	
OR 0.68 (0.21-0.89), p=0.003	

Predictors of stent patency loss by 90 days

Univariate	Mulitvariate
Heparin limited to flush	Postdilatation balloon < 5mm
OR 14.3 (1.5-33.1), p=0.007	OR <mark>15.2</mark> (5.7-42.3), p<0.001
mTICI < 2b	mTICI < 2b
OR 12.7 (4.9-97.9), p=0.001	OR 6.3 (0.98-45.2), p=0.080
Tandem lesion	
OR 9.2 (1.1-18.4), p=0.030	
Postdilatation balloon < 5mm	
OR 7.1 (5.4-57.9), p=0.002	
ASPECT < 8	
OR 6.2 (1.3-14.1), p=0.024	

Conclusions

This **first systematic evaluation** of using **MicroNET-covered** stent **routinely** in carotid-related stroke patients (eligible for emergency recanalization) indicates:

- safety and efficacy of strategy to seal the atherosclerotic/thrombotic "culprit" material with anatomical reconstruction of the lumen
- feasibility of both antergrade and retrograde stent implantation in tandem lesions
- high rate of acute angiographic success and in-hospital stent-patency
- favorable 90-day clinical outcomes in this complex patient cohort
- high 90-day stent-patency rate (when postdilation done with balloon ≥5mm)

This opens up expanding the MicroNET-covered stent indications to acute carotid syndrome