

OCT Analysis of CAS Cases -The Benefits of MicroNet™

Gianmarco de Donato Full Professor of Vascular Surgery University of Siena Italy

Speaker's name: Gianmarco de Donato

x I have the following potential conflicts of interest to report:

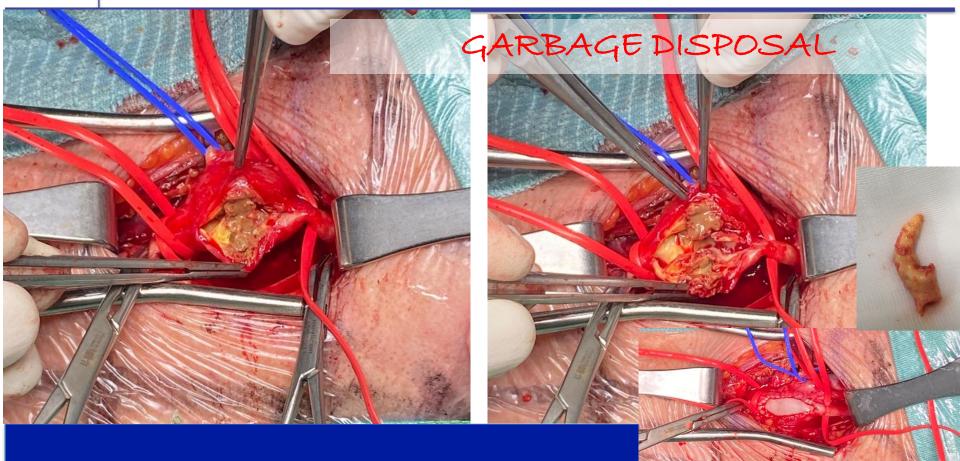
Research contracts

x Travel & educational grants (Boston Scientific, Terumo, Inspire, Endologix, Gore, Penumbra)

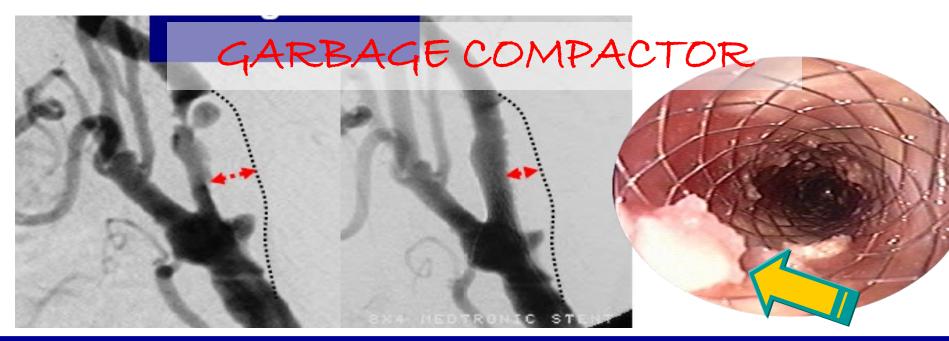
Employment in industry

Stockholder of a healthcare company

Owner of a healthcare company


⑦ Other(s)

I do not have any potential conflict of interest



Treatment options

Treatment options

• **ENDOVASCULAR** \rightarrow Plaque containment!

Courtesy of M. Makaroun, University of Pittsburg Courtesy of K. Balzer, Mulheim

EuroIntervention

Carotid angioplasty and stenting: lesion related treatment strategies

Table 3. Stent technical characteristics

Stent technical features	Cobalt-alloy	Nitinol OCD*	Nitinol CCD**
Foreshortening	TS	Π	TI
Conformability / flexibility	+	++	-
Vessel wall adaptability	+	++	+
Scaffolding	++	+	++
Radial strength	+	++	++
Radial stiffness	+	+	+
Lesion covering	++	-	++

l ecend:

Alberto Cremonesi¹*; Carlo Setacci²; Raffaella Manetti¹; Gianmarco de Donato²; Francesco Setacci²; Guido Balestra¹; Ignazio Borghesi³; Paolo Bianchi¹; Fausto Castriota¹

1. Interventional Cardio-Angiology Unit, Villa Maria Cecilia Hospital, Cotignola (RA), Italy

- 2. Department of Vascular and Endovascular Surgery, University of Siena, Siena, Italy
- 3. Neuro-surgical Department, Villa Maria Cecilia Hospital, Cotignola (RA), Italy

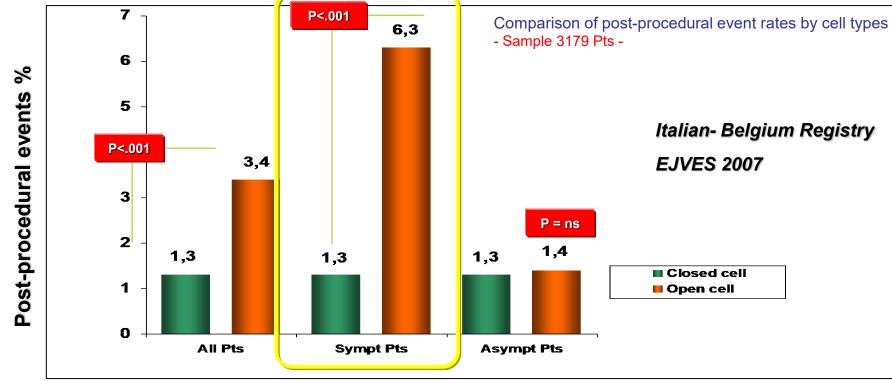
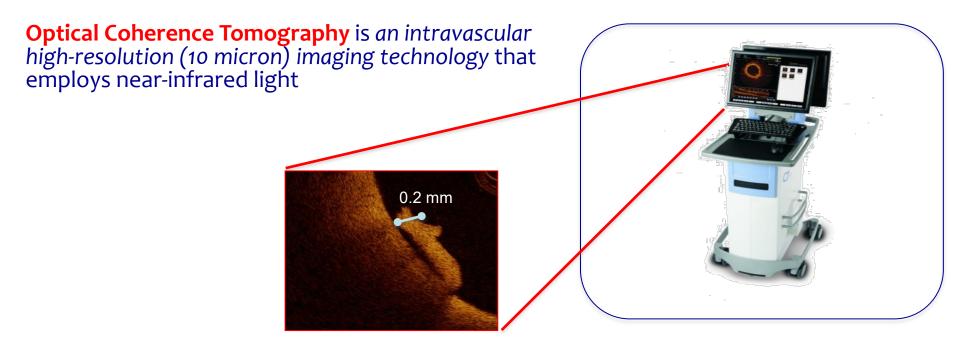
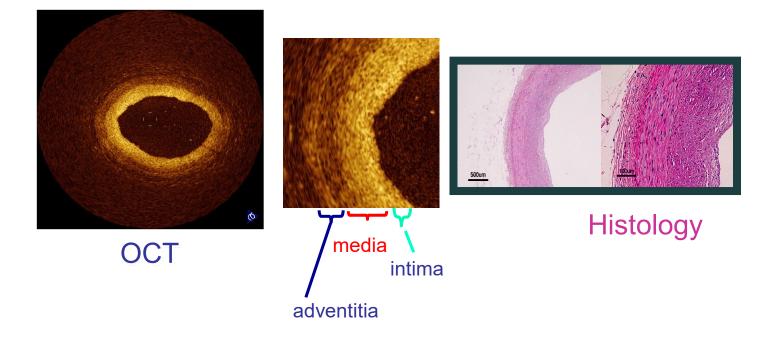

EuroInterv.2005;1:289-295

Table 4. Specific carotid lesions and bifurcation anatomy

Carotid lesion / bifurcation issue	Type of stent	
1. medium to long lesions (15 to > 25 mm)	Cobalt-alloy braided thread stent	
2. soft-dishomogeneous lesions		
3. straight carotid bifurcation		
4. carotid bifurcation lesions with ICA/CCA diameter mismatching	Nitinol open cell stents	
5. angled carotid bifurcation		
6. short lesions (<15 mm)		
7. highly calcified lesions	Nitinol closed cell stents	
8. straight carotid bifurcation		


Influence of carotid stent design (closed vs open) & cell area

BOSIERS M, *de DONATO G*, DELOOSE K, VERBIST J, PEETERS P, CASTRIOTA F, CREMONESI A, SETACCI C. Does free cell area influence the outcome in carotid artery stenting? *Eur J Vasc Endovasc Surg. 2007 ; 33: 135-41.*

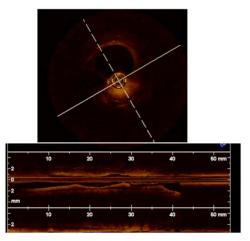

OCT for Stent Selection

What is OCT?

OCT is a high-resolution imaging technology

J ENDOVASC THER 2012;19:303-311

♦ CLINICAL INVESTIGATION


Safety and Feasibility of Intravascular Optical Coherence Tomography Using a Nonocclusive Technique to Evaluate Carotid Plaques Before and After Stent Deployment

Carlo Setacci, MD; Gianmarco de Donato, MD; Francesco Setacci, MD; Giuseppe Galzerano, MD; Pasqualino Sirignano, MD; Alessandro Cappelli, MD; and Giancarlo Palasciano, MD

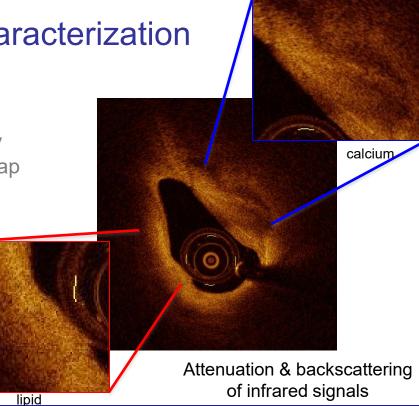
Department of Surgery, Vascular and Endovascular Surgery Unit, University of Siena, Italy.

Conclusions: Intravascular OCT during a nonocclusive flush appears to be feasible and safe in carotid arteries.

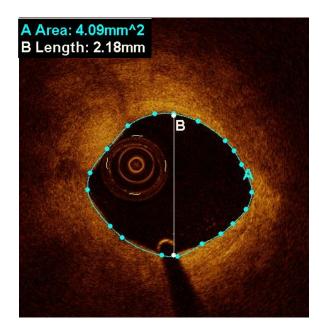
Mechanical injection of 20 ml 50% diluited contrast at 6ml/sec (to replace blood from the artery)

J Endovasc Ther 2012 Jun; 19(3): 303-11

303

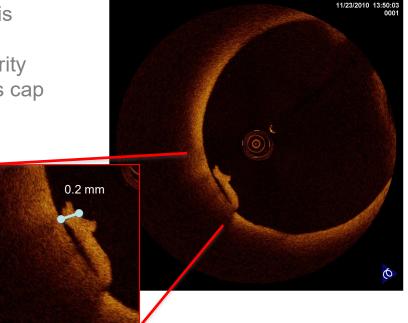

Why do I use OCT in carotids?

UTILITY - results



- Plaque type
- Degree of stenosis
- Area of stenosis
- Fibrous cap integrity
- Rupture of fibrous cap
- Ulceration

- Plaque type
- Degree of stenosis
- Area of stenosis
- Fibrous cap integrity
- Rupture of fibrous cap
- Ulceration



- Plaque type
- Degree of stenosis
- Area of stenosis
- Fibrous cap integrity
- Rupture of fibrous cap
- Ulceration
- Thrombus

- Plaque type
- Degree of stenosis
- Area of stenosis
- Fibrous cap integrity
- Rupture of fibrous cap
- Ulceration
- Thrombus

Why do I use OCT in carotids?

UTILITY - results

OCT in carotids – new frontiers

2. Interaction between plaque & stent

Intraop control:

- Residual stenosis

- Stent apposition

- Stent malapposition
- Cell area modification
- Fibrous cap rupture
- Plaque micro-prolaps
- Branch side coverage

Follow-up control:

- neointimal thickness
- complete/incomplete stent struts coverage

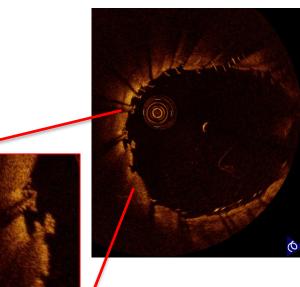
Intraop control:

- Residual stenosis
- Stent apposition
- Stent malapposition
- Cell area modification
- Fibrous cap rupture
- Plaque micro-prolaps
- Branch side coverage

Follow-up control:

- neointimal thickness
- complete/incomplete stent struts coverage

floating struts

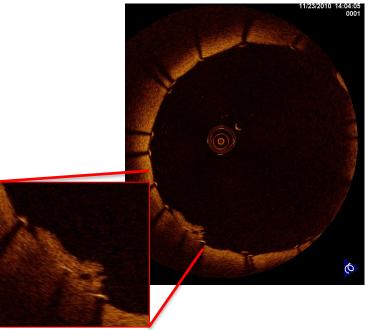


Intraop control:

- Residual stenosis
- Stent apposition
- Stent malapposition
- Cell area modification
- Fibrous cap rupture
- Plaque micro-prolaps
- Branch side coverage

Follow-up control:

- neointimal thickness
- complete/incomplete stent struts coverage

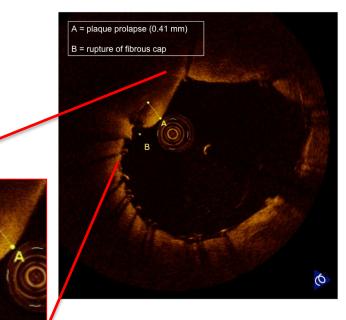


Intraop control:

- Residual stenosis
- Stent apposition
- Stent malapposition
- Cell area modification
- Fibrous cap rupture
- Plaque micro-prolaps
- Branch side coverage

Follow-up control:

- neointimal thickness
- complete/incomplete stent struts coverage


B

Intraop control:

- Residual stenosis
- Stent apposition
- Stent malapposition
- Cell area modification
- Fibrous cap rupture & Plaque micro-prolaps
- Branch side coverage

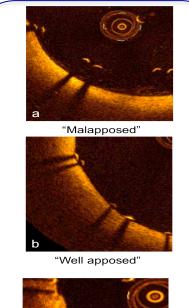
Follow-up control:

- neointimal thickness
- complete/incomplete stent struts coverage

High-resolution makes the difference

Low-resolution image

High-resolution image


Design

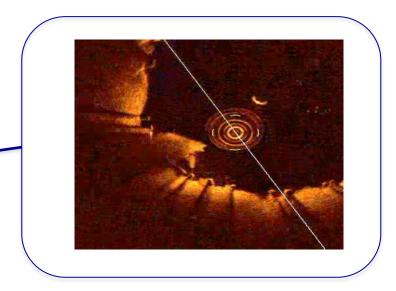
Prospective single center study

Objectives

- To evaluate the rate of:
 - stent malapposition
 - plaque prolapse
 - fibrous cap rupture

G. de Donato, F. Setacci, P. Sirignano, G. Galzerano, A.Cappelli, C. Setacci. OPTICAL COHERENCE TOMOGRAPHY AFTER CAROTID STENTING: RATE OF STENT MALAPPOSITION, PLAQUE PROLAPSE AND FIBROUS CAP RUPTURE ACCORDING TO STENT DESIGN. *Eur J Vasc Endovasc Surg 2013;45:579-87*

"Embedded"



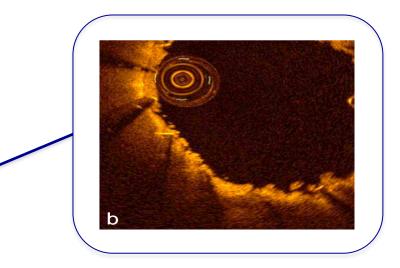
Design

Prospective single center study

Objectives

- To evaluate the rate of:
 - stent malapposition
 - plaque prolapse
 - fibrous cap rupture

G. de Donato, F. Setacci, P. Sirignano, G. Galzerano, A.Cappelli, C. Setacci. OPTICAL COHERENCE TOMOGRAPHY AFTER CAROTID STENTING: RATE OF STENT MALAPPOSITION, PLAQUE PROLAPSE AND FIBROUS CAP RUPTURE ACCORDING TO STENT DESIGN. *Eur J Vasc Endovasc Surg 2013;45:579-87*



Design

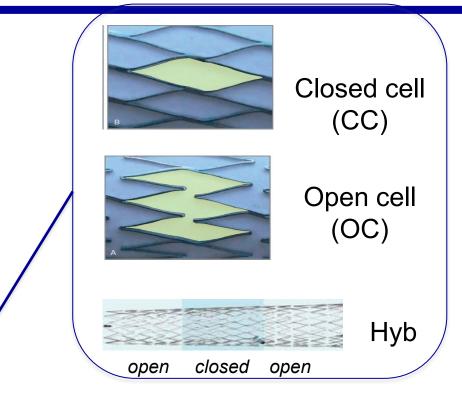
Prospective single center study

Objectives

- To evaluate the rate of:
 - stent malapposition
 - plaque prolapse
 - fibrous cap rupture

G. de Donato, F. Setacci, P. Sirignano, G. Galzerano, A.Cappelli, C. Setacci. OPTICAL COHERENCE TOMOGRAPHY AFTER CAROTID STENTING: RATE OF STENT MALAPPOSITION, PLAQUE PROLAPSE AND FIBROUS CAP RUPTURE ACCORDING TO STENT DESIGN. *Eur J Vasc Endovasc Surg 2013;45:579-87*

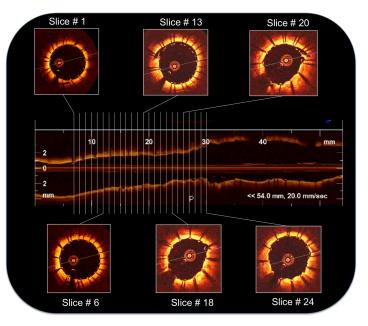
Design


Prospective single center study

Objectives

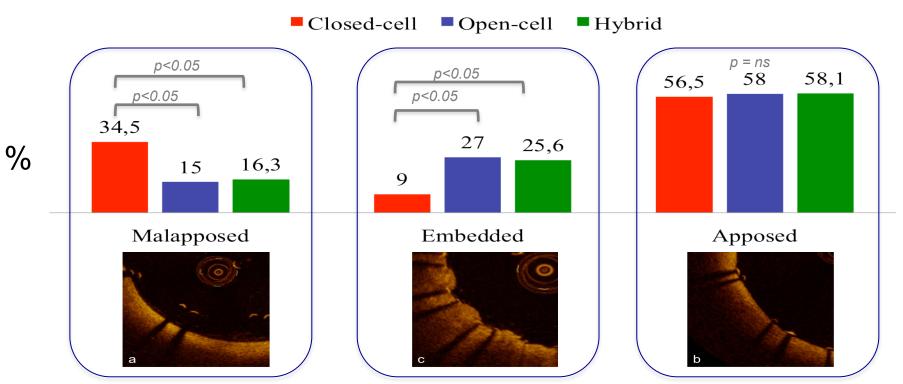
To evaluate the rate of:

- stent malapposition
- plaque prolapse
- fibrous cap rupture

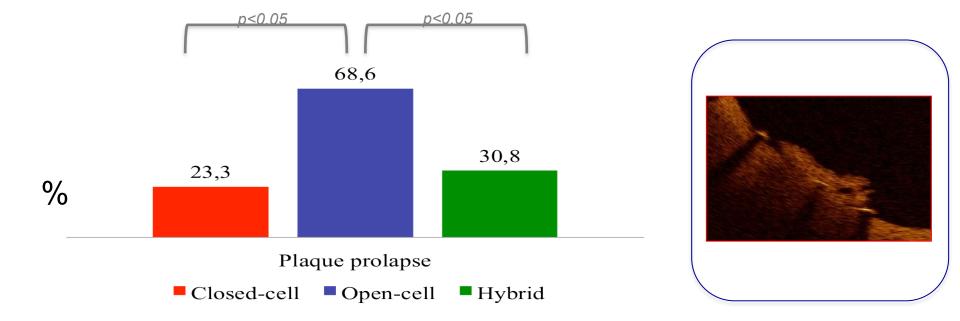


Materials and Methods

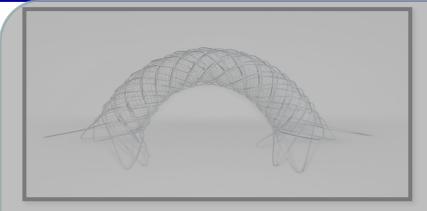
- 40 consecutive patients undergoing protected CAS + OCT
- Off-line analysis of OCT frames (dedicated core laboratory)
- Cross-sectional OCT images within the ICA were evaluated at 1 mm intervals.



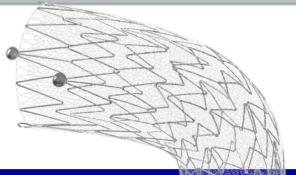
Results:


Stent apposition

Stent apposition



Results: Plaque prolapse


New carotid stent design

Terumo - Roadsaver

Gore – carotid stent

Inspire – C-Guard

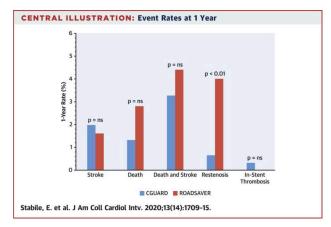
Dual layered stents – Meta-Analysis

Use of Dual-Layered Stents in Endovascular Treatment of Extracranial Stenosic of the Internal Carotid Artery: Results of a Patient-Based Meta-Analysis of 4 Clinical Studies.

Stabile E, de Donato G, Musialek P, De Loose K, Nerla R, Sirignano P, Chianese S, Mazurek A,

Tesorio T, Bosiers M, Setacci C, Speziale F, Micari A, Esposito G.

JACC Cardiovasc Interv. 2018 Dec 10;11(23):2405-2411. doi: 10.1016/j.jcin.2018.06.047.

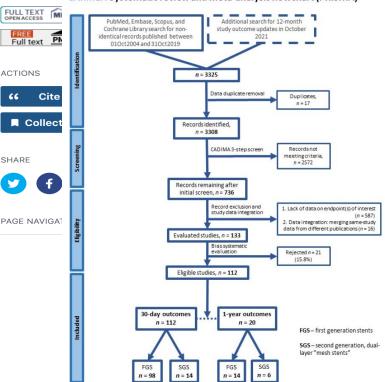

PMID: 30522670 Free article.

Use of Dual-Layered Stents for Carotid Artery Angioplasty: 1-Year Results of a Patient-Based Meta-Analysis.

Stabile E, **de Donato G**, Musialek P, Deloose K, Nerla R, Sirignano P, Mazurek A, Mansour W, Fioretti V, Esposito F, Chianese S, Bosiers M, Setacci C, Speziale F, Micari A, Esposito G. JACC Cardiovasc Interv. 2020 Jul 27;13(14):1709-1715. doi: 10.1016/j.jcin.2020.03.048.

PMID: 32703595 Free article.

Minor stroke	1.07 (6)		
	1.07 (0)	0.17 (1)	1.25 (7)
Major stroke	0 (0)	0 (0)	0 (0)
Death	0 (0)	0.17 (1)	0.17 (1)
Any stroke and death	1.07 (6)	0.36 (2)	1.44 (8)

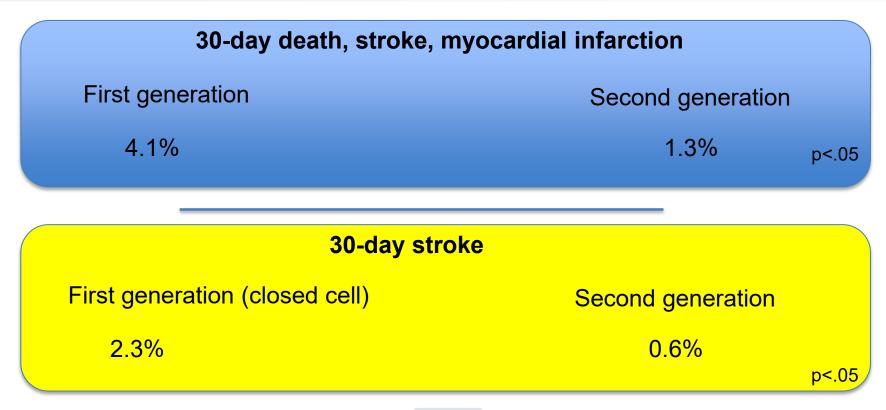


> J Clin Med. 2022 Aug 17:11(16):4819. doi: 10.3390/icm11164819. Review

Clinical Outcomes of Second- versus First-**Generation Carotid Stents: A Systematic Review and Meta-Analysis**

Adam Mazurek¹, Krzysztof Malinowski², Kenneth Rosenfield³, Laura Capoccia⁴, Francesco Speziale ⁴, Gianmarco de Donato ⁵, Carlo Setacci ⁵, Christian Wissgott ⁶, Pasqualino Sirignano⁴, Lukasz Tekieli⁷, Andrey Karpenko⁸, Waclaw Kuczmik⁹, Eugenio Stabile ¹⁰, David Christopher Metzger ¹¹, Max Amor ¹², Adnan H Siddigui ¹³ Antonio Micari¹⁴, Piotr Pieniażek¹⁷, Alberto Cremonesi¹⁵, Joachim Schofer¹⁶, Andrei Schmidt¹⁷, Piotr Musialek¹, CARMEN (CArotid Revascularization Systematic Reviews and MEta-aNalvses) Investigators Affiliations + expand PMID: 36013058 PMCID: PMC9409706 DOI: 10.3390/jcm11164819 **Free PMC article**

Data of 68,422 patients from 112 eligible studies were meta-analyzed



66

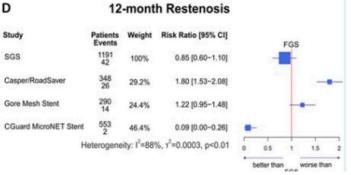
Vascular Surgery, University of Siena - Italy

Review > J Clin Med. 2022 Aug 17;11(16):4819. doi: 10.3390/jcm11164819.

Vascular Surgery, University of Siena - Italy

Meta-analysis Second- vs. First- generation carotid stents

At 30 days (in relation to FGS)

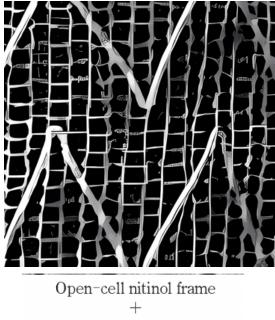

- both Casper/Roadsaver and CGuard reduced 30-day DSM (- 2.78 and 3.03% *p* < 0.001)
- the Gore stent was neutral

At 12 months (in relation to FGS)

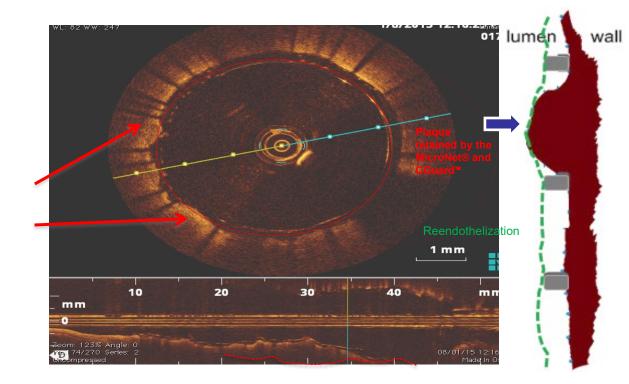
- Casper/Roadsaver reduced Ipsil Stroke (-3.25%, p <0.05) but increased ISR (+3.19%, *p* = 0.04),
- CGuard showed a reduction in both Ipsil Stroke and ISR ٠ (-3.13%, -3.63%; p = 0.01, p < 0.01),
- whereas the Gore stent was neutral

А **30-day Stroke** Study Weight Risk Ratio [95% CI] Events FGS 2531 26 SGS 0.20 [0.08-0.32] 100% 585 Casper/RoadSaver 23.1% 0.17 [0.02-0.31] 311 Gore Mesh Stent 12.3% 0.96 [0.75-1.17] 1635 CGuard MicroNET Stent 64.6% 0.18 [0.06-0.30] Heterogeneity: I2=87%, 72=0.0003, p<0.01 0.5 D 12-month Restenosis Study Weight Risk Ratio [95% CI] Patients Events 1191 42 SGS 0.85 [0.60-1.10] 100% 348 26 Casper/RoadSaver 29.2% 1.80 [1.53-2.08]

Review > J Clin Med. 2022 Aug 17:11(16):4819. doi: 10.3390/icm11164819.



Vascular Surgery, University of Siena - Italy

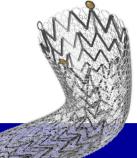


The real mesh stent

Inspire C-Guard



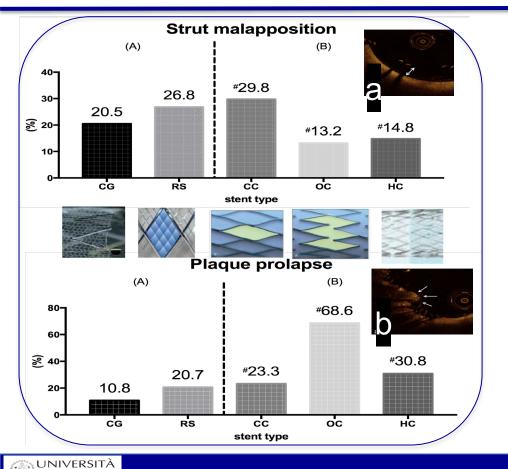
Outside PET micronet Cell size : 150-180 μm


New Generation, Mesh-Covered Stents

EuroIntervention. 2017 Aug 1. pii: EIJ-D-16-00866. doi: 10.4244/EIJ-D-16-00866. [Epub ahead of print]

Optical Coherence Tomography Assessment of New Generation Mesh- Covered Stents after Carotid Stenting.

Umemoto T¹, de Donato G, Pacchioni A, Reimers B, Ferrante G, Isobe M, Setacci C.



EuroIntervention. 2017 Aug

Outcomes

DI SIENA 1240

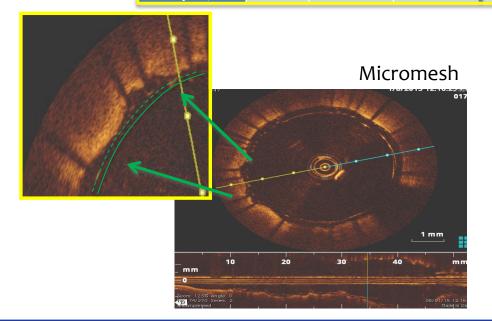
• No procedural neurological complications occurred (TIA/stroke/death 0% at 30 days).

Slice-based analysis

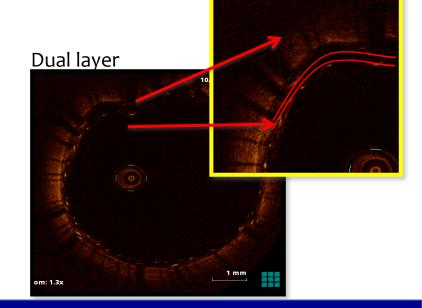
• Compared with conventional stents, the incidence of stent malapposition in mesh-covered stents was intermediate between closed cell stents (29.8%) and open and hybrid cell stents (13.2% and 14.8%).

• Plaque prolapse was more frequent in open cell stents (p.04).

EuroIntervention. 2017 Aug


Micromesh vs. Dual layer – OCT analysis

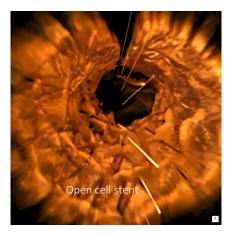
EuroIntervention. 2017 Aug



Stent CGUARD ROADSAVER All type Type 1-3 Type 4 All type Type 1-3 Type 4 Plaque type* Patient n. 11 5 6 5 5 0 70 82 Slice n. 166 96 82 0 Prolapse ,n 18 9 9 17 17 0 Prolapse, % 10.8 9.3 12.8 20.7 20.7 0

*According to the Gray-Weale classification²

UNIVERSITÀ DI SIENA 1240



Vascular Surgery, University of Siena - Italy

Conventional Carotid Stents

Partial and not uniform plaque coverage, leading to plaque protrusions or prolapse into the vessel lumen

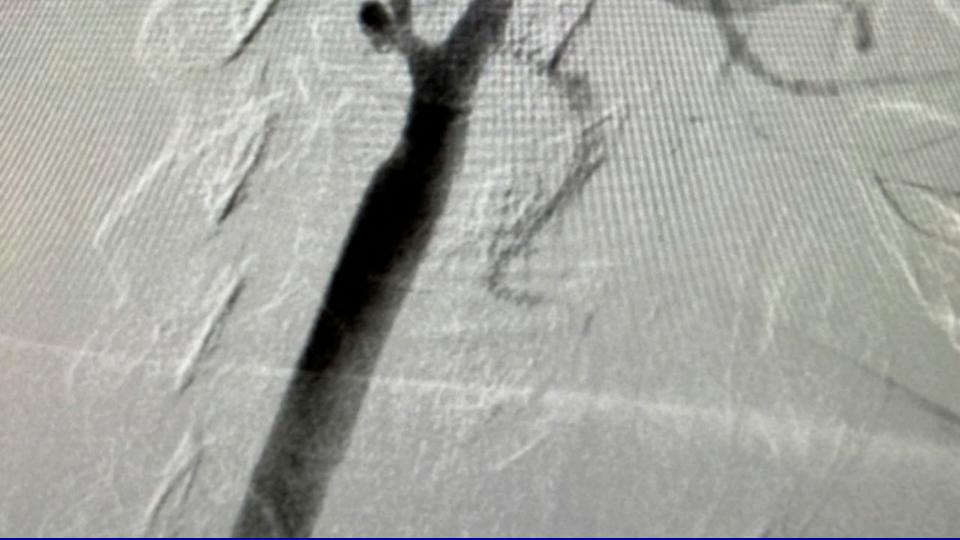
DI SIENA 1240

Roadsaver / Casper

Uniform plaque coverage; no plaque protrusions; big support structures are dimed by the big metal amount in the lumen

CGuard DEPS

The MicroNet[™] **permanently covers** the plaque preventing "debris" passage through the mesh



CONCLUSION

From EBM to tailored surgery & precision medicine

Piazza del Campo, Siena – Italy

Vascular Surgery, University of Siena - Italy

